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FOREWORD 

"he wbrk described in this report was performed under a contract 
(Number NASr-37) granted to Stanley Aviation Corporation in April 1961 
by the National Aeronautics and Space Administration. 
status reports have been issued in July 1961 (Stanley Report No. 776) and 
October 1961 (Stanley Report No. 787) and this document represents the 
Final Report on a research study to investigate human tolerance to short 
duration acceleration ueing the dynamic model technique. 
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and Mr. H. F. Scherer of the National Aeronautics and Space Administra- 
tion (Manned Spacecraft Center) for their valuable assistance during 
this program. Also, the cooperation of the following agencies who 
supplied important experimental data is acknowledged! Holloman Air 
Force Base, Naval Air Material Center, Federal Aviation Agency, 
Aeromedical Laboratory of the Wright Air Development Division, Aviation 
Crash Injury Research of Cornel1 University. 
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SUPNARY 

This r e p o r t  is  concerned with the  s tudy of human to l e rance  t o  

ab rup t  a c c e l e r a t i o n s  where t h e  d u r a t i o n  times are l e s s  than one t e n t h  

o f  a second. 

A dynamic model analogous t o  t h e  human body, c o n s i s t i n g  of  a 

spring-mass system, is used i n  the  a n a l y s i s .  When an a c c e l e r a t i o n  

is app l i ed  t o  the  base of  the s p r i n g ,  t h e  response of  the system is 

similar t o  the  dynamic response of the human body under the  i n f l u -  

ence of  t he  same a c c e l e r a t i o n .  If the i n p u t  accelerat ion-t ime h i s -  

t o ry  is assumed t o  have a s imple form, such :is t h a t  r ep resen ted  by 

a s t e p ,  rect=mgular o r  ramp f u n c t i o n ,  the s o l u t i o n  of t h e  motion of 

the model i n  terms of the s p r i n g  d e f l e c t i o n  and mass a c c e l e r a t i o n  is 

r e l a t i v e l y  simple.  The b a s i c  mathematics involved i n  o b t a i n i n g  t h i s  

dynamic response is developed i n  the  Appendices f o r  a v a r i e t y  of 

simple i n p u t  forms. The t o l e r a n c e  c r i t e r i o n  adopted c o n s i s t s  o f  

s e t t i n g  a l i m i t  on the  mass a c c e l e r a t i o n  a t t a i n e d  by the mass, s o  

t h a t  the peak mass a c c e l e r a t i o n  achieved under given inpu t  condi- 

t i o n s  i s  an important  parameter. A l i n e a r  , und;imped , s i n g l e  degree 

of freedom system is used as t h e  b a s i c  model, b u t  the in f luence  of 

d:mping and non- l inea r i ty  of the s p r i n g  on t o l e r a n c e  l i m i t s  is a l so  

considered. The ou tpu t  of t h e  model, i n  terms of t h e  m a s s  accelera-  

t i o n ,  depends on t h e  i n p u t  d u r a t i o n  and damping, b u t  can be as much 

as twice the value of the i n p u t  a c c e l e r a t i o n .  I n  the impact r eg ion ,  

v e l o c i t y  change is a n  important c r i t e r i o n .  

A phys ica l  i n t e r p r e t a t i o n  of t he  motion of  t h e  mass is given and 

t h e  response c h a r a c t e r i s t i c s  of  the system f o r  s t e p ,  r e c t a n g u l a r ,  ramp, 

p a r a b o l i c  and s i n u s o i d a l  i n p u t s  are descr ibed.  The model is used i n  

a q u s l i t a t i v e  s tudy of  r e s t r a i n t  and scot cushion e f f e c t s ,  and f o r  

t h e  case of an  occupant i n  an escape capsule  o r  s e a t .  Tlie i n f luence  
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of  rate of onse t  on dynamic response is considered and the  inf. lu- 

ence of r i s e  time ana s p r i n g  frequency on t o l e rance  l e v e l s  is 

de duce d . 
The theory  of two and t h r e e  degree of freedom systems is 

developed i n  an at tempt  t o  o b t a i n  a b e t t e r  r e p r e s e n t a t i o n  of  the 

human body. These pre l iminary  i n v e s t i g a t i o n s  show t h a t  such models 

can be used,  b u t ,  f u r t h e r  in format ion  on the  mechanical p r o p e r t i e s  

of the body are d e s i r a b l e .  

t h a t  t h e  s i n g l e  degree of freedom system r e p r e s e n t s  a u s e f u l  work- 

i n g  model, and over-complication at t h i s  s t a g e  w i l l  no t  provide 

b e t t e r  a n a l y s i s  techniques.  

On p r e s e n t  ev idence ,  i t  is considered 

The equa t ions  of motion governing the  motion of t he  spring-mass 

system c o n t a i n  c e r t a i n  c o e f f i c i e n t s  t h a t  m u s t  be eva lua ted  by corre-  

l a t i o n  with experimental  da ta .  A l l  t he  a v a i l a b l e  test  resu l t s  have 

been reviewed, b u t  end p o i n t  information is very  l i m i t e d ;  and only 

t e n t a t i v e  conclus ions  could be drawn. Values of equiva len t  f r e -  

quency and al lowable mass a c c e l e r a t i o n  have been deduced f o r  t he  

headward, forward and backward a c c e l e r a t i o n  d i r e c t i o n s .  I n  the  

da t a  analyses ,  an equiva len t  r ec t angu la r  i npu t  was used f o r  def in ing  

the  i n p u t  a c c e l e r a t i o n  and d u r a t i o n  t ime,  i n  an a t tempt  t o  remove 

i n c o n s i s t e n c i e s  i n  the  choice of t hese  values .  

When complex a c c e l e r a t i o n  i n p u t s  have t o  be s t u d i e d ,  as is 

usua l  i n  a p r a c t i c a l  ca se ,  a n a l y t i c a l  s o l u t i o n s  of the  equat ions  

of motion a r e  not  poss ib l e  and numerical  methods m u s t  be used. A 

d i g i t a l  computer (IBM 1620) has been programmed f o r  t h i s  purpose 

and an e l e c t r o n i c  analog developed t h a t  can be used f o r  r a p i d  

ana lyses .  The method of applying these  techniques is descr ibed.  

The primary use of t he  dynamic. model is f o r  the a n a l y s i s  of 

a r b i t r a r y  i n p u t s  t o  p r e d i c t  i f  a g i v e n z c e l e r a t i o n  time h i s t o r y  

X 



w i l l  prove harmful t o  a human, or not. 

of the  app l i ed  a c c e l e r a t i o n ,  a frequency is assigned t o  the  spr ing-  

mass system and the  ou tpu t  (mass a c c e l e r a t i o n )  of the  model is deter- 

mined f o r  the  given inpu t .  Comparing the  maximum mass a c c e l e r a t i o n  

with t h e  relevaxit a l lowable va lue  enab le s  the  expected to l e rance  

l e v e l  t o  be determined. 

Depending on the  direotion 

xi 





SYMBOLS 

The n o t a t i o n  p resen ted  here  r e f e r s  t o  t h e  main t e x t  

only. Because of t h e  l a r g e  amount of mathematics involved, 

some d u p l i c a t i o n  of symbols used i n  the t e x t  and Appendices 

has  proved necessary.  For  t h e  symbols used i n  the  Appendices, 

r e f e rence  

Appendix. 

A 

C 

E 

F 

g 

G 

C 

c 

G 
P 

G' 

k 
K 

"i 

mP' mq 

*i 

tr  

m 
C 

t 

A t  
a t  

C 

should be made t o  t h e  l i s t  of symbols preceding each 

a m p l i f i c a t i o n  f a c t o r  € o r  s i n u s o i d a l  i npu t  

output  amplitude ( t h r e e  degree of freedom, 
> =  I, 2 ,  3) 

damping c o e f f i c i e n t  ( c  = 

energy abso rp t ion  c a p a c i t y  of  cushion 

m 

f o r c e  

a c c e l e r a t i o n  dire t o  g r a v i t y  

gravi  t a t i o n a l l y  normal i z e d  inpu t  a c c e l e r a t i o n  

g r a v i t a t i o n a l l y  normalized mass a c c e l e r a t i o n  

g r a v i t a t i o n a l l y  normalized s teady app l j ed  
a c c e l e r a t i o n  
s p r i n g  s t i f f n e s s  

damping cons t an t  

mass a s s o c i a t e d  with t h r e e  degree of freedom 
system ( j = 1, 2,  3 )  

mass a s s o c i a t e d  with one o r  two degree of 
freedom system 

m a s s  of escape system o r  s e a t  

.. 
(3) 

r a t i o  of o u t p u t  t o  i.nput a c c e l e r a t i o n s  f o r  
t h r e e  degree of freedom system ( &  = l., 2, 3) 

time 
rise time 

i npu t  du ra t ion  t i m e  

l i m i t i n g  d u r a t i o n  time f o r  impulsive theory  

x i i i  



V 

.. 
YP 
3i 
.. 

.. 
yco 

d 

6 

6 
1;' 

n 

velocity or velocity change 

bottoming velocity change 

acoeleration required to bottom Cushion (= W'6,) 

input acceleration applied to system, relative 
to fixed datum 

acceleration of mas8 mp relative to fixed datum 

apparent acceleration of mass due to force 
developed in its own spring-damper relative 
to fixed datum (multi-degree of freedom system) 

amplitude of sinusoidal input acceleration 

step input function (acceleration) 

slope of ramp input function 
(rate of onset of acceleration) 

constant in parabolic input function 

deflection of spring 

rate of change of deflection of spring (velocity) 

rate of change of velocity of spring (acceleration) 

deflection of spring at bottoming 

initial deflection of spring 

"frequency" (= mk = Ir. 
real part of output amplitude 

imaginary part of output amplitude 

phase angle 

spring frequency (ua  = - 
damped frequency of system ( uc = 

mP 

three degree of 
freedom model 

k 
WP - C') 

frequency of sinUSOidd input 

coupled frequency ( L = l,2,3) 
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1.0 INTRODUCTION 

The importance of the problem of human reaction to applied 
accelerations has been recognized for many years, but recent 
advances in the aerospace sciences have underlined the fact that 
adequate knowledge in this area is still lacking. 
known that much higher accelerations can be sustained if the 
duration time is short, than if the acceleration is applied 
over a long period. 
encountered by humans in many situations such as automobile 
and aircraft crashes, ejection from high speed aircraft, 
re-entry, surface impact on landing and during accelerating 
rocket flight. Man's tolerance to short duration accelera- 
tions must be known with some degree of accuracy before safe 
advances can be made in these areas. Although a considerable 
amount of experimental information has been obtained to date, 
the way in which it has been gathered and presented does not 
allow adequate predictions to be made about future projects 
from the available data. 

It is well 

Abruptly applied accelerations are 

The solution of the problem is not simple and will require 
a high degree of cooperation between the various groups of 
diverse talents and experiences working in the human factors 
field. In this respect, it is important that the knowledge 
gained by each group is transmitted in such a way that its 
significance is not overlooked because of misunderstanding or 
lack of familiarity with the particular branch of science or 
engineering concerned. The purpose of this report is to present 
the results of a study that essentially emphasises the analytical 
approach to the subject. The investigation is mainly theoretical, 
but the experimental results of others play an important part 
in the development of the theory. The mathematics involved 
might appear trivial to the dynamicist but, at the same time, 
might present a barrier to the non-mathematically minded biologist. 
This barrier must not prove insurmountable, since the engineering 
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approach presents one aspect of the problem which can have 
important implications in other fields. For this reason, 
an attempt has been made in the present report to explain 
the basic engineering approach to the subject and point out 

the physical implications of the mathematical results. 

In justifying a mathematical approach to the problem 
of human tolerance to abrupt accelerations it should be 

pointed out that no branch of science is complete or exact 
until an acceptable theory has been developed and checked 
by correlation with experiment. 

dynamic model is one attempt to produce a workable analogy, 
and by analyzing the motion of a spring-mass system under 
the influence of an applied acceleration,and attempting to 

relate the results to the observed response of a human under 

similar conditions, it is hoped that the model can be used 
to predict whether or not a given acceleration-time history 
will prove harmful. A t  least, the information gained will 

make a valuable addition to the gathering stock-pile of 

knowledge in the acceleration stress field and contribute 

The postulating of a 

to an overall understanding of the problem. 

The investigations described in this report are confined 
to a study of the dynamics of human tolerance to short 

duration accelerations where the injurious effects are mainly 
of a structural nature, rather than hydraulic effects 

associated with longer duration accelerations which have 

been extensively studied in the centrifuge. Short duration 

is taken here to include the impulse (or impact) region which 
refers to accelerations of duration 0 to approximately 

0.01 sec. and the plateau region, which extends the regime 
to approximately 0.1 sec. The term plateau region is derived 

from the general shape of the tolerance curve which appears 

to level off for durations of approximately 0.01 sec. to 
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0.1 sec., as indicated in Figure 1. The form of the 
tolerance curve will be discussed in mcre detail in 

Section 2.2. 

1.1 "he Problem 

When a human is subjected to an abrupt acceleration 
of sufficient magnitude, injuries that are mainly of a 
mechanical nature can result. These depend to some extent 
on the direction of application of the acceleration but 
can consist of bone fracture, internal organ rupture and 
bruises. Cardiovascular shock and debilitation can also 
result and head injuries from impact blows and neck snap 
can occur, although for the purpose of this study,perfect 
head restraint is assumed. The medical and biomechanical 
aspects a r e  of extreme importance but, in the semi-empirical 
analysis used here, it is sufficient to determine an 
acceleration level that will cause any injury that is liable 
to seriously impair the subject's functional ability. This 
criterion has been taken as the definition of an end point 
for the analysis of experimental results and when physiolog- 
ical effects giving rise to discomfort are noticeable but do 
not impair the subject's functional ability, the condition is 
termed near-end point. 

Very simply stated, the problem is to determine a means 
of predicting whether or not a particular acceleration input 
to a vehicle will prove injurious to the occupant. In the 
past, experimental methods have been used where volunteers 
have been subjected to high accelerations in an attempt to 
determine tolerance limits for the human body, These tests 
have supplied valuable information, but are often difficult 
to interpret and the results cannot easily be applied to 
other cases where the conditions might be radically different 

from those pertaining to the test. From the point of view 
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of vehicle design, the lack of reliable information imposes 

performance penalties on the vehicle since, when human life 

is involved, it is natural to take a very conservative view 
of the available allowables. Further, expensive develop- 

ment testing is necessary to evaluate the vehicle from the 

human factors standpoint. 

Experiment has shown that the accelerations measured on 
the human body can, under some conditions, greatly exceed the 

vehicle accelerations. Although the occupant's response 
cannot be measured with any degree of accuracy, since it is 
difficult to obtain a rigid mount for the measuring instrument 

and it is certain that different parts of the body experience 

different accelerations, the qualitative results provide an 
important clue to one way in which the problem can be tackled. 
The response of the occupant must be related in some way to 

the vehicle acceleration, which is the most convenLent parameter 

for reference purposes. This can be done by postulating an 
analagous spring-mass system to represent the man and studying 

the motion of the mass when an acceleration is supplied to the 
base of the spring. 

This concept of a dynainic model representing a human 

under the influence of a short duration acceleration is 

developed in this rep0r.t and its application to various 
aspects of the problem discussed. In particular, an 

analytical method is developed that can be used to determine 

whether or not an arbitrary acceleration-time history is 
tolerable to man. The mathematics involved in studying the 

dynamics of the model have been separated from the main text 

and reported in Appendix form, but constant reference is made 

to the mathematical analyses and the implications of the results. 
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1.2 Historical Background 

A complete review of the work done in the field of 
acceleration stress is out of place here and will not be 
attempted. Even investigations covering the short duration 
regime ha=produced a tremendous amount of work and fairly 
comprehensive bibliographies exist, (see, for instance, 
Refs. 1 and 2). 
will be mentioned in an attempt to approach the problem with 

the correct perspective. 

Only work relevant to the present project 

The first systematic study of the problem was under- 
taken in Germany during World War I1,when the dangers 
associated with the ejection seat were recognized, The 
work of Wiesehofer (Ref.3) and Richter (Ref. 4) had shown 
that vehicle, or input,accelerations up to about 20 G could be 
withstood. Examination of the breaking loads of various 
vertebrae (reported by Ruff and Geertz in Refs. 5 and 6 )  
led to what was probably the first tolerance curve for head- 
ward accelerations, indicating a plateau limit of 20 G. 

Geertz studied the dynamics of ejection by considering two 
masses coupled together by an elastic spring and noted the 
importance of overshoot. 

At the close of the war, British workers carried out 
tests using vertical catapults which culminated in the design 
of the Martin-Baker seat (Ref. 7) which develops approximately 
20 G ' s  over 0.1 sec. The work of Latham (Ref. 8) is 
particularly noteworthy as he studied the response of a man- 
seat system experimentally and theoretically using spring-mass 
systems and an analog computer, and suggested optimum cushion 
characteristics for use with ejection seats. A summary of 
German and early British work on this topic is contained in 

Reference 9. 
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I n  t h e  U.S.A., e j e c t i o n  seat des ign  w a s  pioneered by 

v a r i o u s  government es tabl ishments .  

s t u d i e d  t h e  i n t e r a c t i o n  of a man and h i s  e j e c t i o n  seat with 

a view t o  reducing  t h e  overshoot a c c e l e r a t i o n  a t t a i n e d  by 

the  m a n .  Watts, Mendelson and Kornfield (Ref. 11) o b a r v e d  

exper imenta l ly  the  in f luence  of r a t e  of i n c r e a s e  of accelera- 
t i o n  on the overshoot experienced by v a r i o u s  parts of t he  

body. More r e c e n t l y  t h e  work of Hess (Ref 12) , Kornhauser 

(Ref. 13)  and Brock (Ref. 14)  has  u t i l i z e d  t h e  dynamic model 

concept t o  s tudy  the  in f luence  of r a p i d l y  a p p l i e d  acce lera-  

t i o n s  on man and animals. 

a s u b j e c t ' s  

and the  v i b r a t i o n  s t u d i e s  of von Gierke and Coermann (e.g. see 

Refs. 16 and 1 7 )  have i l l u s t r a t e d  the  e x i s t e n c e  of resonance 

phenomena i n  the  human body, and c o n t r i b u t e d  g r e a t l y  t o  an  

understanding of t he  phys ica l  p rocesses  involved. 

Kroeger (Ref. 10) 

The e f f e c t  of r e s t r a i n t  e l a s t i c i t y  on 

response has also been i n v e s t i g a t e d  (Ref. 15) 

More d i r e c t  exper imenta l  measurements have u t i l i z e d  the  

rocke t  s l e d  i n  which animals and humans have been exposed t o  

a c c e l e r a t i o n s  approaching, and i n  excess  of,end p o i n t  

magnitudes. 

( R e f .  20) i n  t h i s  a r e a  is p a r t i c u l a r l y  w e l l  known. 

impact regime, simple drop t e s t s  have g iven  u s e f u l  d a t a  on 

man's t o l e r a n c e  t o  impuls ive ly  a p p l i e d  f o r c e s .  Many people 

have engaged i n  t h i s  type of work and the  resul ts  of Holcomb 

(Ref. 21) and Swearingen (Ref. 22) are of p a r t i c u l a r  i n t e r e s t .  

The work of Stapp (Refs. 18 and 19 )  and Beeding 

I n  the  

A t  S t an ley  Aviation, experimental  work a s soc ia t ed  with 

the  B-58 escape capsule  development program i n d i c a t e d  that the  

dynamic response of t he  human was extremely important and 

a c c e l e r a t i o n s  measured on test  s u b j e c t s  i n d i c a t e d  t h a t  

a c c e l e r a t i o n s  f a r  i n  excess  of t he  normally accepted to le rance  

l e v e l s  could be withstood i f  the a p p l i c a t i o n  time was extremely 
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short. Theoretical studies by Payne (Refs. 23 and 24) 
showed that a simple mechanical model of the human body, 
consisting of an elastic spring-mass system, could be used 
as a basis for a theory to explain and correlate experimental 
data, and his work laid the foundations of the present study. 
A brief summary of the dynamic model technique and its 
application to the analysis of human tolerance to acceleration 
was given in Ref. 25. 

1.3 Choice of a Dynamic Model 

Medical research has shown that when the human body is 
subjected to impulsive or  steady state forces, deformation 
and displacement of the structural components and organs occur 
which result from forces generated within the body. 

transmission, amplification and attenuation of these internal 
forces must result from basic processes that can be explained 
by the laws of physics, but the effects, and therefore an 
understanding of the effects, are masked by the complexity of 
the human body, the limitations on the type of experiment that 
can be performed, and the complicated subjective response of 

the subject. 

The 

Taking a broad view, the human body consists of a bony 
structural skeleton, held together by tough fibers, which 
provides mechanical support and a lever system on which the 
muscles act. The slightly curved vertebrae or spinal column 
is the basic structural component and consists of a number 
of vertebrae acting as load carrying elements and separated 
by supporting tissues which act as shock absorbers and 
connecting links. The rib cage and abdominal cavity contain 
the visceral organs (heart, lungs, liver, ,etc 
massive components, suspended freely by connective tissues from 
a muscle and bone support. The basic constituents such as bone 

which are fairly 
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tissue, ligaments and muscle exhibit properties familiar t o  

the engineer, such as elasticity, compressibility, shearing 
and tensile strength. In addition, when the body is exposed 
to comparatively low frequency vibrations, resonances occur 
within the body which can be observed directly and by the low 

tolerance level of the subject to a particular frequency of 
vibration. 

It appears likely, then, that the motions induced in the 
body by rapidly applied accelerations can be explained by 
considering the elements of the body as mechanical systems 

exhibiting elastic properties. At the same time, because 
of the complexity of the body structure, a complete description 
of body response in terms of integrated mechanical models 
is not possible at this stage. However, a start has to be 
made somewhere and it is logical to investigate the motions 
of a simple spring-mass system which is known to exhibit 
dynamic response characteristics similar to the human body. 

For instance, a man subjected to a headward acceleration along 
the spinal axis (which is known to frequently produce spinal 

fractures) can be represented by a single spring-mass system 
where the spring has stiffness characteristics similar to the 
spine and the mass approximates that of the man. The motion 

of the spring-mass system for a given input acceleration can 
be mathematically predicted with accuracy, and if reasonable 

correlation can be obtained between the theory and experimental 

observations made with a man, the model can be used as a basis 
for predicting human tolerance to arbitrary acceleration inputs. 
An improved model would include mechanical components (dampers) 

to simulate the damping effect of the human body. A further 

refinement can be obtained by employing multiple spring-mass 

systems to represent various parts of the body. 
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The mechanical model cons i s t ing  of one o r  more spring- 

mass systems can the re fo re  be regarded as an approximate analog 

of the human body f o r  s tudying response t o  s h o r t  dura t ion  

a c c e l e r a t i o n s ,  but i t  is i n  no way a t r u e  r ep resen ta t ion ,  and 

regarding i t  as Such may be misleading. 

g ross  e f f e c t s  and re l ies  on the  establ ishment  of c e r t a i n  c r i t e r i a  

obtained from experimental  d a t a  before i t  can be used. Even so, 

i t  should prove a powerful t o o l  i n  the  a n a l y s i s  of acce lera t ion-  

time h i s t o r i e s  and the  eva lua t ion  of techniques f o r  increas ing  

human to le rance  l e v e l s .  The a c t u a l  model used is not  so 

important as the  fact that c e r t a i n  equat ions  can be deduced which 

expla in  the  e x i s t i n g  experimental  d a t a  and lend themselves t o  

the  p r e d i c t i o n  of f u t u r e  events.  

It w i l l  only p r e d i c t  

2.0 Exis t ing  Data 

2.1 Experimental Background 

A v a r i e t y  of experimental  f a c i l i t i e s  have been used in 
an attempt t o  e s t a b l i s h  the  a c c e l e r a t i o n  l e v e l s  t o  which man 

can be subjec ted  before  some form of phys ica l  i n j u r y  results.  
These inc lude  rocke t  s l e d s ,  c a t a p u l t s ,  shake t a b l e s  and drop 

tes t  f a c i l i t i e s .  When human 6UbjeCts are used the  to le rance  

leve l  is governed by the  r e a c t i o n  of the  t e s t  s u b j e c t  t o  a 

v a r i e t y  of cond i t ions  and i t  is poss ib l e  t h a t  t he  a c t u a l  

upper l i m i t  may be considerably higher  than t h a t  determined 

from voluntary  exposure. 

been inves t iga t ed  with the  use  of animals, but some caut ion  

should be used i n  applying these  r e s u l t s  t o  humans because o f  

phys io logica l  and psychological  d i f fe rences .  

acc iden t s  has  given some information on the  human i n j u r y  

threshold ,  but t he  condi t ions  governing these  cases  are far 
from cont ro l led .  

The severe i n j u r y  threshold  has  

The ana lye la  of 
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The main difficulties in interpreting experimental data 

are) correct interpretation of the results of measuring 

instruments, the effect of seat and harness configuration, 

lack of standard acceleration input patterns, orientation 
of the subject, differences in response of individual subjects 
and the often unreproducible nature of the experimentso 

Qualitatively, experiment has shown that the major factors 

influencing human tolerance to short duration accelerations 

are : 

(a) 

(b) 
(c) duration of the input 

(d) 
(e) orientation of the body 

direction of application of input 

magnitude of the input acceleration 

rate of application of the acceleration ("rate of onset") 

These pioneer experiments, often carried out at great risk to 

the volunteers, have produced tentative values for human 

tolerance levels, but prediction of tolerance is still an art 

rather than a science. 

The useful application of a dynamic model depends on 
experimental data and all the known results have been 

consulted in the course of the present investigation. 

possible, data referring only to properly restrained subjects 

in rigid seats and subjected to acceleration forces near the 
major directional axes has been used. 

and his successors at Holloman A.F .B .  has constituted the main 

source of information, but the cooperation of all persons and 

agencies engaged in this field is acknowledged. 

Wherever 

The work of Stapp 

2.2 Present Tolerance Limits 

In 1959, Eiband (Ref. 21, realizing the need for a 

critical survey of the status of experimental data, made a 
comprehensive survey of the existing literature. He 
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approximnted t h e  form of the  i n p u t  a c c e l e r a t i o n  t o  a 

t rapezoidal .  pu l se  ( see  i n s e t  of F ig .  2 )  and used the  p l a t eau  

d u r a t i o n  and magnitude as the  two s i g n i f i c a n t  va r i ab le s .  

P l o t t i n g  v e h i c l e  ( i n p u t )  a c c e l e r a t i o n  i n  G I s  aga ins t  duratj-on 

time he produced suggested to l e rance  curves based on the  

more r e l i a b l e  experimental  da t a .  Two of t h e s e  curves,  

r e f e r r i n g  t o  a c c e l e r a t i o n s  app l i ed  i n  t h e  headward and 

backward d i r e c t i o n s ,  are reproduced i n  F igu res  2 and 3. 
These curves found a ready a p p l i c a t i o n  amongst des igne r s  

and have proved inva luab le ,  but still  s u f f e r  from c e r t a i n  

drawbacks. Tnspection w i l l  show t h a t  t h e r e  is a considerable  

unknown area between the  region of vo lun ta ry  human e q o -  -ure 

and t h e  known region of i n j u r y .  I n  t h e  headward case ,  t h i s  

unknown area covers  over  20 G i n  t h e  o rd ina te ,  which inc ludes  

t h e  r e c i o n  of most i n t e r e s t  today. I n  a d d i t i o n ,  t he  boundaries 

are n o t  p a r t i c u l a r l y  w e l l  de f ined  and a f e w  more r e l i a b l e  p o i n t s  

might w e l l  change t h e  gene ra l  shape of t h e  curves ,  p a r t i c u l a r l y  

i n  t h e  impulse region.  The method of a n a l y s i s  of t h e  r e s u l t s  

w a s  i n  no way r i g i d  as t he  deduct ion of a plateau l e v e l  and 

d u r a t i o n  t i m e  from a complex a c c e l e r a t i o n  trace is no e a s y  

t a sk  and v a r i o u s  combinations of t h e  t w o  parameters are e q u a l l y  

c o r r e c t .  The f i v e  hog p o i n t s  shown i n  Fig. 2 were appa ren t ly  

obtained from a s i n g l e  experiment which is n o t  p a r t i c u l a r l y  

v a l i d ,  s i n c e  t h e  experiment r ep resen ted  an end point .  The 

r e v e r s e  argument is a l s o  t r u e  s i n c e  i t  is d i f f i c u l t  t o  f i t  

criteria based on a t r apezo ida l  i n p u t  t o  t h e  complex acceleration- 

t i m e  h i s t o r i e s  encountered i n  practice. 

Included in Fjgure 2 is a t o l e r a n c e  curve based on German 

d a t a  r e l a t i n g  t o  compressive s t r e n g t h  t es t s  performed on t h e  

human s p i n e  ( R e f .  5). Th i s  information w a s  used by Ruff t o  

c a l c u l a t e  t h e  s ta t ic  load necessary t o  cause r u p t u r e  and used 

t o  d e f i n e  t h e  "plateau" r eg ion  of t h e  t o l e r a n c e  curve. In t h e  

impulse region,  dynamic c o n s i d e r a t i o n s  l e d  to t h e  l i n e a r  t o l e r a n c e  
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line similar in shape to that suggested by Eiband. 
curve estimates tolerance limits at approximately half the 

input values resulting from Eiband's work. 

The Ruff 

"he general form of these curves meritssome comment. 

It can be seen that for duration times up to 0.01 sec. the 
tolerance level drops off linearly (log - log scale) as the 
duration time increases. This can be explained in terms of 

dynamic response, since the acceleration achieved by the man 
takes a finite time to develop. When full overshoot is attained 
(at about 0.01 sec.) any further increase in the duration time 
does not increase the man's response for a given input level, 
until the "long" duration regime is approached when hydraulic 
effects become noticeable and reduce the tolerance level still 
further. 

"he curves published in the Handbook of Instructions for 
Aircraft Designers (H.I.A.D.) contain the human tolerance 

limits that usually have to be met by present day aircraft 
designs. 

(e.g. Ref. 27) have been the subject of considerable discussion 
on the validity of these curves (see for instance Ref. 28) of 
which the one pertaining to headward and backward accelerations 

is shown in Figure 4. 
curves should refer to the vehicle rather than the man,. since 

they do not take into account the man's dynamic overshoot. 

Inconsistencies in the definition of time when referred to rate 

of onset and duration time are also apparent, and the inter- 

pretation of allowables in the short duration time region 

containing the rate of onset curves is impossible. Further, 

although "rate of onset" is important, it will be shown later 
that it is not a limiting criterion. 

This publication (Ref. 26)  and its derivatives 

It certainly appears that the H.I.A.D. 

12 



This discussion of the existing information shows that the 
presently accepted human tolerance levels to short duration 
accelerations leave much to be desired, and one merit of the 
analytical approach is that it forms the basis of a more 
consistent definition of tolerance levels and lends itself to 
the study of any type of acceleration input. The method of 
applying the dynamic model to this end will be described later. 

3.0 General Principles of the Dynamic Model 

3.1 Physical Interpretation of the Model 

"he dynamic model proposed as a basis for an analytical 
study of the tolerance of the human body to short duration 
accelerations is a spring-mass system composed, in its 
simplest form, of a mass m 
attached to a spiral spring considered to have zero mass. 
This basic model is illustrated in Figure 5(a). The spring 

exhibits elastic properties in that it tends to return to an 
equilibrium point when a displacement is introduced into the 
system. When a displacement is induced, the restoring force 
developed in the spring is proportional to the displacement or 
deflection and the factor of proportionality is called the 
spring constant (k). 
deflection & can be written 

(the equivalent mass of the man) 
P 

Thus the restoring force F for a given 

F = k s  

If, after displacement, the spring is allowed to move 
freely, it will oscillate about the equilibrium point with a 
certain fixed amplitude (maximum deflection), exhibiting 

harmonic, sinusoidal motion. The number of complete 
oscillations or vibrations per second is the frequency ( W )  

which is related to the spring stiffness and mass by the 

expressi.on 



As a result of its motion, the system possesses an internal 
velocity which is the rate of change of deflection with time 
(d6/dt  ) and referred to as the spring velocity in this 

report, and an acceleration or rate of change of velocity with 
time ( dt' which is always towards the equilibrium 

point. The spring velocity and acceleration can be interpreted 

as the velocity and acceleration of the mass with respect t o  

the base of the spring. The usual sign convention is that 

the deflection is positive in compression and negative in 
extension. 

When an acceleration input is applied to the base of the 

spring, the system moves in such a way that the mass accelera- 
tion relative to some fixed axes is the resultant of the input 

acceleration and the acceleration resulting from the spring 

deflecting. The complete motion of the mass is best 

illustrated by a specific example. 

'In Appendix B the equations governing the motion of a 
single spring system subjected to a step input acceleration 
are developed, for the case of a linear spring(force directly 

proportional to the deflection). 

of  motion leads to the following expressions for the deflection, 

velocity and acceleration of the spring (Equations B.7, B.8, 
13.9 respectively). 

Solution of the equation 

deflection 6 '+ 5 ( I - W m k )  
i.dL 

acceleration d'n' - = g = c 4 C A W t  
d k l  

where CX is the step input acceleration and t represents time. 

14 



r 

These expressions are plotted in Figure 6.(a) to (c) and 
The deflection of the spring can be interpreted as follows. 

(defined as the difference between the unloaded and loaded 
length) is zero at time zero and again at a time represented by 
cut  =?JZ 
maximum value of zac/WL is reached when Ut = 11 

velocity is essentially a sine wave of amplitude "/a having 
a zero value initially and at maximum deflection. 
acceleration starts off equal to the input acceleration (but in 
the opposite sense) and is directed towards the spring base. 
It then decreases to zero at the point in time when the system 
is in equilibrium (force developed in the spring equals the 
input force) and the velocity is a maximum, reverses its direc- 
tion and peaks at w* = I /  

as the input acceleration. It then decreases to zero again 
when the velocity builds up to a maximum in the negative 
direction. 

and is never negative for this type of input. The - . The spring 

The spring 

- 
and is then in the same direction 

The resultant mass acceleration ( y  ) contains the two 
P 

components - spring acceleration and input acceleration - and 
from Equation B.10 is given by 

* -  = O ( ( I ' c i T 5 W t )  Y P  
The spring acceleration is in the same direction as the input 
for ' 2 ~  C L o k  < "4, so in this region the resultant mass 
acceleration is greater than the input, a condition known as 
overshoot. In fact the peak value of the resultant mass 
acceleration, which occurs when w t  = , is twice the input 
acceleration, which is the 100% overshoot case. The motion 
of the spring continues with time in this manner, and the mass 
acceleration experiences a succession of maxima at dt= ii, 35i,SZ 

etc. until the input is removed. 

- 

At the onset of the applied acceleration the 

up potential energy until it carries a load equal 
in llweight" of the mass. At this stage the mass 

spring stores 
to the increase 
still has 



kinetic energy and the spring continues to compress until 
this is destroyed, at which point the spring deflection and 

mass acceleration attain maximum values (spring fully compressed) 
and all the internal energy is in the form of potential energy 
of the spring. 

The maximum mass acceleration (from Equation B.2)is given 

by 

when there is no damping present, so the maximum mass accelera- 

tion, or the maximum spring deflection is indicative of the 
peak response of the system. Since the spring-mass system is 
analagous to the human body, a correct choice of spring frequency 

(a) corresponding to the relevant part of the body under 
investigation enables the mass acceleration or spring deflection 
to be calculated (for a given acceleration input), which can 

be taken as a measure of the dynamic response of the man. 

criteria can be developed for the values of y 
correspond to some end point in the man, the model can then be 
used to predict tolerance limits. 

can be obtained from a study of the available experimental data. 

If 
and/or 6 that 

P 

The necessary correlation 

3.2 The Influence of Damping 

Resistance to motion is always present in any system and 
the effect is normally referred to as damping. When the 

motion is vibrational by nature, as in the case of a spring- 
mass system, the presence of damping successively reduces the 
amplitude of the vibration until the motion is completely 

eliminated. Typical commonplace examples of damped motion 

are the diminishing amplitude of a pendulum swinging in air 
due to the air resistance and the decay of electrical vibrations 
in an oscillatory circuit resulting from the resistance to 
electron motion. Whenever resistance to motion is present, 

energy is dissipated (usually in the form of heat) and the 
system gradually runs down. 
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I n  t h e  human body, v i b r a t i o n s  s e t  up i n  t h e  v a r i o u s  

elements w i l l  be damped by the surrounding matter and a 

mechanical analog of t h e  body should al low f o r  t hese  e f f e c t s .  

The mechanical r e s i s t a n c e  of t h e  body causes  v i scous  damping, 

which is a k i n  t o  t h a t  ob ta ined  with a f l u i d  dash po t ,  which 

can be regarded as c o n s i s t i n g  of a l o o s e l y  f i t t i n g  p i s t o n  

moving i n t o  an o i l - f i l l e d  cy l inde r .  The dash po t  mechanism 

is included i n  t h e  spring-mass system t o  r e p r e s e n t  a l l  the  

damping p r e s e n t  as shown i n  Figure 5.(b). The mechanical 

i n f l u e n c e  of t he  dash pot  is t o  produce a r e s i s t i v e  f o r c e  

which is p r o p o r t i o n a l  t o  t h e  v e l o c i t y  of t h e  mass, so t h a t  

F = ktS 

where 6 is t h e  mass v e l o c i t y  r e s u l t i n g  from t h e  s p r i n g  motion 

( s p r i n g  v e l o c i t y )  and K i s  c a l l e d  the  damping cons t an t .  

damping c o e f f i c i e n t  ( C )  is t h e  q u a n t i t y  normally used and t h i s  

i s  r e l a t e d  t o  t h e  damping cons t an t  (K) by the  expression 

The 

A s  explained i n  Appendix E, t h r e e  damping regimes e x i s t .  

These are c r i t i c a l  damping ( C  = W 1, dead bea t  ( c > w ) and 

s u b - c r i t i c a l  damping ( C  (-4 1. The l a t t e r  ca se  is of 

importance i n  t h e  human body where the damping is small bu t  no t  

n e g l i g i b l e .  

When damping is included i n  the  spring-mass system, its 

main i n f l u e n c e  on t h e  ou tpu t  is t o  reduce the v i b y a t i o n a l  

amplitude and t h e  mass a c c e l e r a t i o n  so t h a t ,  g e n e r a l l y ,  damping 

is b e n e f i c i a l .  Tolerance c r i t e r i a  can a g a i n  be app l i ed  t o  
t h e  model, b u t  some ambiguity is introduced i n t o  t h e  d e f i n i t i o n  

of t o l e rance .  !She mechanical q u a n t i t y  corresponding t o  t h e  

observed p h y s i o l o g i c a l  e f f e c t  can be r ep resen ted  by the  mass 

a c c e l e r a t i o n ,  which i s  a measure of t he  t o t a l  f o r c e  t r a n s m i t t e d  

through t h e  system, o r  the  s t r a i n  ( p r o p o r t i o n a l  t o  d e f l e c t i o n )  



r e s u l t i n g  from t h e  f o r c e  developed i n  t h e  s p r i n g  alone.  

A t  t h i s  s t a g e ,  i t  appea r s  t h a t  the c r i t e r i o n  adopted depends 

on the p a r t  of t h e  body concerned; t h u s ,  the l a t te r  c r i t e r i o n  

i s  more r e c o n c i l a b l e  with t h e  p h y s i o l o g i c a l  f a c t s  f o r  massive 

organs wi th  e l a s t i c  a t tachments ,  but t he  former might be more 

a p p l i c a b l e  t o  t h e  s p i n a l  mode where c rush ing  f o r c e s  on t h e  

i n d i v i d u a l  elements are important.  

A more d e t a i l e d  d i s c u s s i o n  of t h e  i n f l u e n c e  of damping 

w i l l  be found i n  S e c t i o n  4. 

5-3 Multi-Degree .- of _F'eedom Systems 

I n  dynamics, a system i n  which t h e  motion is s p e c i f i e d  

by only one coord ina te  is s a i d  t o  have one degree of freedom. 

The s i n g l e  mass system descr ibed above f u l f i l s  t h i s  cond i t ion ,  

s i n c e  the  motion of t he  mass r e l a t i v e  t o  t h e  s p r i n g  base can 

be desc r ibed  by one coordinate .  Gene ra l ly ,  t h e  number of 

degrees  of freedom is the  same as the  number of masses contained 

i n  t h e  system, s o  t h e  models shown i n  Figure 5 . ( c )  and (d)  are 

termed two and three-degree of freedom systems r e s p e c t i v e l y .  

When t h e  human body is  sub jec t ed  t o  an a c c e l e r a t i o n  i n p u t ,  

more than one p a r t  of t h e  body can  be s e t  i n  v i b r a t i o n .  "he 

p a r t i c u l a r  mode e x c i t e d  depends on its frequency and the dura- 

t i o n  of t h e  i n p u t .  Thus, low frequency modes a r e  slow t o  

e x c i t e  and r e q u i r e  comparatively long i n p u t  d u r a t i o n s  before  

they produce any n o t i c e a b l e  e f f e c t s .  Shake t a b l e  tes ts ,  where 

human s u b j e c t s  have been exposed t o  s i n u s o i d a l  i n p u t s  of va r ious  

f r equenc ie s  and ampli tudes,  have shown t h a t  t he  human body 

e x h i b i t s  two d i s t i n c t  low frequency modes i n  a d d i t i o n  t o  t h e  

much h ighe r  frequency s p i n a l  mode. 

Although a dynamic model cannot g i v e  an e x a c t  r ep resen ta -  

t i o n  of t h e  body, i t  should a t  l e a s t  con ta in  elements r ep resen t -  

i n g  the  major v i b r a t i o n a l  modes. For  the  s i t t i n g  man i t  seems 
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likely that three mechanical systems are sufficient to explain 
the important features of response to short duration inputs, 
if the arms and head are assumed perfectly restrained. There 
is, then, a need for refining the basic dynamic model by 
including more degrees of freedom. The theory of a two-degree 
of freedom model is developed in Appendix J and that for a 
three-degree of freedom model in Appendix K. The mathematics 

is naturally more complicated, but the objects are the same 
in that the deflections developed in each spring and the 
dynamic response of the mass associated with each system must 
be evaluated. Using multi-degree of freedom models it will 
be possible to investigate the response of various parts of 
the body simultaneously and to study the influence of inter- 
actions between the modes. 
values of mass and spring frequency may be assigned to fit a 
particular problem. In this way, the spinal column may be 
considered as a number of spring-mass systems in series which 
can be built up to include the results of experimental measure- 

ments made on vertebrae. This application has been attempted 
with the two-degree of freedom model with some degree of success, 
but it might well be that over complication leads to less 
instructive results. 

The model is quite general in that 

3.4 Correlation with Experimental Data 

"he equation of motion of a single degree of freedom 
model with a linear spring and no damping is derived in 
Appendix B (B.5) and can be written .. 

For the general case of an arbitrary acceleration input this 
equation can be solved in a step-by-step fashion to give thz 
variation of the spring deflection with time. The spring 
deflection can then be related to the resultant mass accelera- 
tion, since y 

.. 
= w"8,  so that a time history of the output 

P 



a c c e l e r a t i o n  can be obtai-ned corresponding t o  the  response of 

t he  man. It is now necessary t o  e s t a b l i s h  a maximum value of 

the  mass a c c e l e r a t i o n  t h a t  can be tal-erated before an end p o i n t  

is  reached. Th i s  can be done by analyzing the  inpu t  acce le ra -  

t i o n  t r a c e s  of t he  a v a i l a b l e  experimental  d a t a ,  ob ta in ing  t h e  

r e l e v a n t  mass a c c e l e r a t i o n s  and c o r r e l a t i n g  t h e s e  with t h e  

medical h i s t o r i e s  of the t es t  s u b j e c t s .  

A more d i r e c t  approach is  a v a i l a b l e  i f  t h e  r e s u l t s  of 

Eiband (Ref. 2 )  a r e  used as a s t a r t i n g  p o i n t .  The d a t a  

p l o t t e d  i n  Figure 2 i n d i c a t e s  t h a t ,  i n  t h e  "plateau" r eg ion ,  t h e  

upper t o l e r a n c e  l e v e l  based on the v e h i c l e  a c c e l e r a t i o n  is about 

40 G. Since the  r e s u l t s  quoted by Eiband a r e  l i m i t e d  t o  t es t s  

t h a t  used r i g i d  s e a t s  and good r e s t r a in t ,  t h e  v e h i c l e  acce le ra -  

t i o n  can be taken as t he  inpu t  a c c e l e r a t i o n  t o  the  model. It 

w i l l  be shown l a t e r  t h a t  the " p l ~ t e a u "  region corresponds t o  

d u r a t i o n  times t h a t  allow 100% overshoot i n  the  ouput of t he  

dynamic model used f o r  headward a c c e l e r a t i o n s .  This  means 

t h a t  t h e  outpiit i s  e x a c t l y  twice the i n p u t ,  and us ing  t h e  

i n p u t  of 40 G t a k e n  from Eiband's curves ,  t h i s  imp l i e s  a 

c r i t e r i o n  of 80 G on the  mass a c c e l e r a t i o n  before  an end p o i n t  

is reached. 

The frequency of vibrat . ion of t he  p a r t i c u l a r  p a r t  of t he  

body under cons ide ra t ion  must  a l s o  be known. I n  some c a s e s  

t h i s  can be measured d i r e c t l y  from v i b r a t i o n  tests b u t ,  f o r  

t he  headward case mentioned above, no such r e s u l t s  are 

a v a i l a b l e .  However, a value of t h e  s p r i n g  frequency r e l e v a n t  

t o  the dynamic model when used t o  analyze sp ina l  i n p u t s  can 

be obtained i n d i r e c t l y  by applying t h e  r e s u l t s  of t he  

mathematical a n a l y s i s  t o  Eihand 's  r e s i i l t s  in the  impulse region. 

Impulsive i n p u t s  a r e  considered i n  Appendjx D and Equation D.23 
g ives  the maximum mass a c c e l e r a t i o n  ( G  

impulsive i n p u t  of G 
21 This equat ion holds  for  At < - w 

a t t a i n e d  f o r  an 
P 

lasting f o r  a time h t ,  viz. G (max) = G C u  A t. 
C P . - Taking logari thms of each 
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side gives the relationship 

which represents the equation of a straight line of slope -1, 
and implies that,if log G 

series of straight lines of slope -1 would be obtained, their 
position relative to the time axis being governed by the 
value of log G (max). Eiband presented his results in just 

this way, and it is found that his points, based on hog data 
do fall approximately on a straight line. Accepting a value 
of 80 for G (max), and fitting the above equation to Eiband's 
results gives a value of W =  280 rad/sec. (approx.) or roughly 
44 cycles per second. 

wemplotted against log At,a 
C 

P 
cd 

P 

Bearing in mind the accuracy of the Eiband curve, it is 
possible, therefore, to evaluate the coefficients appearing 
in the equation of motion and to deduce a criterion for the 
maximum allowable response of the spring-mass system. One 
of the objects of this research program was to collect the 
available experimental data in an attempt to define the 
dynamic model more exactly and test its usefulness as a 
method of analyzing the tolerability of arbitrary acceleration 
inputs. 

4.0 Linear Systems 

The response of a spring-mass system to a given input 
depends on the way in which the restoring force develops in 
the spring with change in deflection. If equal increments 

of deflection produce equal increments of force, the spring 
is said to possess linear characteristics and a plot of force 
against deflection produces a straight line (see Figure B.l(b)). 
The force-deflection relationship for a linear spring is, 

f= = ks 
where k is the sprina stiffness, or,in acceleration units, 

- F = - - s = w 2 s  h 
m~ w r  
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where W is the spring frequency. It is known that certain 
parts of the human body exhibjt non-linear characteristics at 
the higher input amplitudes, but an approximation to a linear 
system can often be made. Considerable progress can be made 

on the assumption of a linear spring system and the mathematics 

is simplified considerably. 

4.1 Characteristics-of Single__Degreg of Freedo-m System 

The response of a single degree of freedom model will be 

investigated analytically using various types of input accelera- 

tions. The equation of motion for an undmped system was 
quoted earlier as .. 

This is an ordinary second order differential equation describing 
the variation of the deflection ( 6 )  with time. The input 

(y  ) can have any arbitrary variation with time, but a closed 

form solution of the equation of motion is possible only if 

the input-time relationship can be represented in some simple 

mathematical form. The response of the dynamic model t o  a 
number of simple acceleration inputs is examined below. 

simple approach gives important qualitative results and can 

often be used as an approximation of a practical case. 

C 

T h i s  

4.1.1 Continuous Step Input 

If the applied acceleration jumps instantaneously to some 
finite value (d) at t = 0 and remains at that value indefinitely, 

the input can be represented by 

and is termed a step input. This case is analyzed in Appendix B 
and the relevant equations for zero damping are 

Equation of motion -- (Equation 8-61 
.. 
6 + LO'S = eA 
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Spring deflection (Equation B.7) 

s 
Resultant mass acceleration (Equation B. 10) 

.. 
31. 

where represents the resultant mass acceleration. 

Maximum mass acceleration (Equation B.16) 
P 

The resultant mass acceleration is analagous to the 
response of a human when subjected to similar input conditions, 
and is illustrated in Figure 7. (see also Fig. B.2) in non- 

dimensional form. It can be seen that the output is less 
than the input for values of 4 "'2 is equal to it when 

- 
- 

we = 7 / % ,  and for values of between I'/z and 3Ti/a 
the output is always greater than the input. In the latter 
case the output acceleration is said to overshoot the input 
acceleration. When u t =  11 , the mass acceleration is 
exactly twice the input which represents 10046 overshoot. 
The output reduces to zero at a time represented by U t -  

and thereafter the pattern is repeated in a cyclic manner. 
When some initial deflection is present in the spring the mass 
acceleration is given by B.ll as 

- 

In deriving this equation it was assumed that the influence 
causing the initial deflection made no force contribution to 
the motion of the mass. It can be seen from Figure 7 that 
such a disturbance increases the mass acceleration for 
and 5n/2> at > 3% etc, but in the region where the mass 
acceleration is a maximum, the value is actually reduced and 
the peak mass acceleration is given by 

'1.c. 

.. 
Ld (mag) = 2 G 4  - Lo= & 

P 
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n 

The explanation of this reduction is that, when an initial 

deflection is present, the compression Ss is attained without 
a velocity being introduced into the system, so that less 
kinetic energy is available and the maximum deflection and mass 
acceleration are reduced. 

If the disturbing force acts throughout the acceleration cycle, 

(contributing an acceleration G' the peak mass acceleration is 

given by 2 [ " l a x )  = (.C+C;') - mLss = 2 d + G '  

so that, in this case, the peak mass acceleration is increased 

by the value of the steady G'field. 

.. 
P 

Thus, preloading in a direction opposite to that of the 
input acceleration can alleviate the peak body response if the 

loading force is removed when the input reaches the same value, 

which would occur if an inelastic restraint was employed. 

In practice, of course, this improvement is difficult to achieve 
due to such effects as curvature of the spinal column, rebound, 

and the presence of multi-directional accelerations. 

When damping is included in the system the equation of 

motion contains an additional term due to the force exerted on 

the mass by the damper, as explained in Appendix E, from which 
the following have been extracted. 

Equation of motion .~. . (Equation E.3) 
.. 8 + 2 c i .  + L d L S  = 

where C is the damping coefficient 

Resultant mass acceleration (Equation E.9) 

where w' 2 hz- c 1  and L3, is the damped frequency 

Maximum mass acceleration (Equation E.11) _-- -- ___I_ 
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where t = 1 he‘(-:$) and the angle is in the 
0, 

second quadrant 

Spring deflection (Equation E.5) 

These equations refer to the sub-critically damped case 
where d > c2 . 
output of the single degree of freedom model, as shown in 
Figure E.2, where it can be seen that maximum value of the mass 
acceleration is reduced, but it is achieved earlier. Figure 8 
compares the response of a damped system based on the total 
force acting on the mass (proportional to mass acceleration) 
and on the spring strain (proportional to deflection) given by 
F = k &  so that 

The presence of damping terms modifies the 

which has a maximum when woe - 5 .  
Up to maximum compression, for a given damping ratio ‘ /w,  

(where ‘/a = 1 represents critical damping), the acceleration 
based on the force developed in the spring is always lower than 
that based on total force and so represents a more optimistic 
tolerance criterion. Thus a study of the response of the 
damped system to a continuous step input indicates that a 
tolerance curve based on input accelerations will be less severe 
in the plateau region (full overshoot always attained) than the 
undamped case, and that allowables based on total force will be 
lower than those using spring force as a criterion. 

4.1.2 Other ~- Continuous Input Functions 

The other simple input forms treated in Appendix B are; 
the linear ramp represented by 
of the function, and the paranolic input represented by y 
These are mainly of academic interest in themselves, since an 
input acceleration wi1.l not go on increasing indefinitely, but 

=/3  t where &3 is the slope 
C 

= x t a  
C 
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the solutions can be useful if the input approximates to either 
form during the onset phase. In this case, the response to 
either the ramp or parabolic function can be used for the 

starting conditions to be used in the second phase. 

function taking the form of. a ramp followed by a constant 
function is quite common in practice, however, a direct solutj.on 
exists for this type of input as shown in Section 4.3.  

An input 

The expressions for the appropriate mass accelerations 

are 

Linear ramp (Equation B.13) 

Parabolic (Equation B.15) 

1.t. 1 .3 .  Rectangular Input 

In practice, the input acceleration is applied for a short 

time (At) only, and the mass continues to move after the 
removal of the applied acceleration, just as a car continues to 

move after the accelerating force has been removed. 

mass acceleration is usually attained at some time greater than 
At, so the solutionsof the equations of motion f o r  t > At 
are important. 

input that rises instantaneously to some value d ,  remains 
constant for a time At and then becomes zero. 

The peak 

This case can be treated by considering an 

The response of an undarcped single degree of freedom 

system to a rectangular input is treated in Appendix B, where 
it is shown that the resultant mass acceleration is given by 
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I -  h4krnt 
where 

is measured from t = At. 
is a phase ang le  g iven  by tan-’ ( - 1 and time 

The peak mass a c c e l e r a t i o n  is shown t o  be (B.19) 
.. 
$+b (maw> = tXL2-2 CM C u l l t  )Ih 

This  expres s ion  shows t h a t  t h e  m a x i m u m  mass a c c e l e r a t i o n  depends 

on t h e  frequency of t h e  system and t h e  i n p u t  d u r a t i o n  t ime,  for 

a given va lue  o f d  . This  dependency is shown i n  F igure  B.5 

of Appendix B, and F igu re  9 i l l u s t r a t e s  t h e  t y p i c a l  response 

of t h e  system f o r  v a r i o u s  i n p u t  d u r a t i o n  times. The output  

can be l e s s  than ,  equal  t o ,  o r  g r e a t e r  than the  i n p u t  acce le ra -  

t i o n ,  depending on t h e  i n p u t  du ra t ion .  Hence, f o r  s m a l l  i npu t  

d u r a t i o n s  the  response of t he  model is low and q u i t e  h igh  i n p u t  

a c c e l e r a t i o n s  can be t o l e r a t e d .  For  the  c o n d i t i o n  

o( 

t he  peak output  a c c e l e r a t i o n  is a l w a y s  l e s s  then  t h e  i n p u t ,  

and the  t o l e r a b l e  i n p u t  a c c e l e r a t i o n s  a r e  always g r e a t e r  than 

the  c r i t i c a l  va lue  a s s igned  t o  the  mass a c c e l e r a t i o n .  “he 

cond i t ion  of 100% overshoot  is given by 

- 
i . e .  COAk ‘1 

- 
so t h a t  f o r  d u r a t i o n  t imes g r e a t e r  than  A t  = “/t.d 

t o l e r a n c e  l e v e l  is independent of t h e  pu l se  du ra t ion .  

t he  

4.1.4.Impulsive Inpu t s  

I f  t he  inpu t  d u r a t i o n  time is extremely s m a l l ,  t he  motion 

of t h e  system is of an  impulsive na tu re  and may be a s ses sed  i n  

terms of v e l o c i t y  change s i n c e  

impulse = f o r c e  x t i m e  = v e l o c i t y  change m a s s  mass 
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I n  t h i s  r e p o r t  t h e  impulse r eg ion  covers  d u r a t i o n  times 

t h a t  a r e  s o  s h o r t  t h a t  f u l l  overshoot i n  t h e  ou tpu t  response 

is no t  achieved. 

as impact and the  s h o r t  d u r a t i o n  i n p u t  a c c e l e r a t i o n  are 

sometimes c a l l e d  "spike" i n p u t s ,  a l though t h e  l a t te r  term 

s t r i c t l y  re fe rs  t o  t r i a n g u l a r  shaped inpu t s .  

The impulse region is a l s o  r e f e r r e d  t o  

The s i n g l e  degree of freedom system with no damping 

is analyzed i n  Appendix D f o r  t he  gene ra l  ca se  of a non- 

l i n e a r  sp r ing .  I f  n is pu t  equa l  t o  u n i t y ,  t h e  equat ions 

a r e  a p p l i c a b l e  t o  t h e  l i n e a r  system d i scussed  here.  The 

peak mass a c c e l e r a t i o n ,  from Equation D.21, can be r ep resen ted  

.. by 

and depends only on t h e  frequency of t he  system and t h e  

v e l o c i t y  change introduced by the  impulse,  so  t h a t  i n p u t  

a c c e l e r a t i o n  and d u r a t i o n  t imes need no t  n e c e s s a r i l y  be 

considered as t o l e r a n c e  parameters. However, t h e s e  terms 

can be introduced by w r i t i n g  the above equat ion i n  the  form 

(Equation D.23)  

which is t h e  r e l a t i o n s h i p  used i n  f i t t i n g  t h e  theory t o  

experimental  d a t a ,  as explained i n  Sec t ion  3.4. 
frequency, i t  is the  area rep resen ted  by 'y . A t  t h a t  is 

important.  

l i m i t  over which t h e  impulse theory is v a l i d  as 

For a given 

C 

Equation D . 2 2  of Appendix D g i v e s  the  d u r a t i o n  

n 

When damping is p resen t  i n  t h e  system, t h e  peak mass 

a c c e l e r a t i o n  der ived i n  Appendix E (Equation E.19) is  
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- c t  
w h e r e  t h e  damping i n f l u e n c e  is contained i n  t h e  e term, 
and t h e  time a t  which the  maximum occurs  is desc r ibed  by 

from Equation E.18 where tan-’ 

i n  t h e  t h i r d  and second quadran t s  r e s p e c t i v e l y .  

and tan-’ ( ““IC ) are 

If t h e  f o r c e  developed i n  t h e  s p r i n g  is used 

t o l e r a n c e  c r i t e r i o n ,  t h e  r e l e v a n t  a c c e l e r a t i o n  is wag-s 
given by Equation E.16 

where t is now - I & - I ( & % )  . The two c r i t e r i a  are compared 
b o  

i n  F igu re  10 f o r  v a r i o u s  damping values .  

Using the deduc t ions  of Sec t ion  4.1.1 and t h e  r e s u l t s  

quoted above, a l l o w s  t h e  in f luence  of damping on t h e  gene ra l  

form of t h e  t o l e r a n c e  curve (based on t o t a l  f o r c e )  t o  be 

determined. F i g u r e  11 shows how t h e  p o s i t i o n  of t h e  to l e rance  

curve is a f f e c t e d  by t h e  choice of c e r t a i n  damping r a t i o s .  

It can be seen  t h a t ,  f o r  damping r a t i o s  a s s o c i a t e d  with the  

human body (15 t o  20%), t h e  to l e rance  curve is moved up about 

2G% i n  t h e  p l a t e a u  r eg ion  ( - 8  GI. 

t o l e r a n c e  l i n e  moves up with i n c r e a s i n g  damping u n t i l  t he  

value c/w = C.27 is reached ( see  a l s o  Figure 101, and then 

back t o  t h e  undamped l i n e  a t  = 0.5. “his is due t o  t h e  

f a c t  t h a t  f o r  =/UJ v a l u e s  up t o  0.5 the  maximum output  occurs  

a f t e r  t = 0 ( s e e  d i s c u s s i o n  fol lowing Equation E.19) and some 

energy is d i s s i p a t e d .  For “,&,> 0.5 t h e  t o l e r a n c e  curve moves 

down, s i n c e  t h e  f o r c e  is t r ansmi t t ed  through t h e  damper immediately. 

Using s p r j n g  s t r a i n  as  a c r i t e r i o n ,  t he  t o l e r a n c e  curve would 

become less s t r i n g e n t  as t h e  damping inc reased  throughout the whole 

region.  

when damping is p resen t .  

I n  t h e  impulse r eg ion  t h e  

This is because the peak s p r i n g  f o r c e  is always reduced 
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4.1.5 Sinusoidal Inputs 

If the applied acceleration fluctuates in a sinusoidal 
fashion it can be represented by the expression 

.. .. 
= %Lo&12L: 

where y the frequency of the motion. 
A continuous vibration of this form normally involves duration 
times outside the range of the model consir;ered here, but in 
some cases a particular acceleration car be approximated by 
the initial cycle or cycles of a sine wave. 

is the amplitude and co 

The solution of the equation of motion is developed in 
Appendix E. The expression for 8 (see Equation ~.28) has 
two distinct parts, one representing an oscillation of frequenc 
(0) dependent on the parameters of the spring-mass system, and 
the other describing a motion of frequency (a), the forcing 
function. "he former, known as the transient solution, is 

given by 

0 

oscillates with the applied frequency is called the steady 

state solution - .  and is represented by 

.. 

The output of the system is the resultant of these two terms 

as shown in Figure 12. As time increases, the transient 
term is gradually damped out due to the influence of the 

e-"' term, the r a t e  of attenuation depending on t h e  damping 

constant of t,he system. 



The steady state solution was used in Appendix E to obtain 
the amplification factor (.A) which indicates the amount of 
overshoot in the output acceleration. This is given by 

This expression has a maximum when RZ = Lox- aCcl i.e, 

which represents the case of resonance. When no damping is 
present, resonance occurs when ll = L 3  and the amplification 
can be infinite. Under these conditions very high output 
amplitudes result for small input amplitudes, but the presence 
of even a small amount of damping modifies the picture 
considerably. 

4.2 Restraint Effects 

During the analysis of the experimental data it became 
apparent that the results depended to a large extent on the 
type of restraint used in the particular experiment. The 
importance of good restraint has long been recognized in the 
design of harness systems and practical experience counts 
for a great deal in this field. Although outside the terms 
of the present study, it was decided to make a brief investigation 
of the influence of restraint on the output of the dynamic 
model. Although the results are of a qualitative nature they 
illustrate the usefulness 08 the model and provide pointers 

for future work. 

4.2.1.Seat Cushion Effects 

The single degree of freedom system is modified to include 
on elastic cushion by placingaspring in series with the one 



representing the human body, as shown in Figure G . l  of 
Appendix G. If damping is ignored the model can be 

represented by a simple equivalent spring system where the 

equivalent frequency Wis related to the two component spring 
frequencies W ,  (man) and 

expression (Equation G.4) 

(cushion) by the following 

The cushion spring effectively reduces the overall frequency 

of the system which implies that the response will be slower 

and, for a given input duration in the impulse region,of 
smaller magnitude (decreasing umoves the tolerance curve up). 
This is true if the cushion does not bottom as shown by 
Equation G.9 which gives the ratio 

.. 
y, max (with cushion) I 

The maximum mass acceleration of the system is always reduced 

by using a cushion, and the reduction is greater for small 
values of W (i.e. a soft cushion) which is illustrated 
graphically in Figure G.2. 

100% overshoot is always attained and the cushion has no 
effect on the output of the system or the tolerance curve. 

For long duration times the full 

If the cushion bottoms during the motion the mathematical 
analysis proceeds as explained in Appendix G. The cushion 

spring has to be restrained at some deflection given by 6 , ~  
(deflection at bottoming) and thereafter the input is transferred 
directly to the body spring. 

kinetic energy of the cushion spring is transferred to the body 

spring, only the potential energy being retained. 

At the instant of bottoming any 

In the impulse region, it can be shown (Equation G.11) 

that the peak mass acceleration after bottoming is 



where A v  is the velocity change introduced by the impulse 
and E is the energy absorption capacity of the cushion, 
i.e. the potential energy ( $ k x  saB 

spring at bottoming. Comparing this equation with that 
representing the output of the single (body) spring system 
(Equation D.21) 

z C 
stored in the cushion 

it can be seen that the output is again reduced due to 
attenuation in the cushion. 
writ ten 

The bottoming velocity can be 

which is s m a l l  for a weak cushion spring ( W L  and k, small) 

and for large values of the body spring ( w, and k, 
The beneficial influence of the cushion in the impulse region, 
even when bottoming occurs,can be seen from Equation G.15 

large). 

.. y max (with cushion) 

max (no cushion) 
P .. 
yP 

So,  for a given velocity change, the attenuation of the impulse 
depends on the energy absorption capacity of the cushion and 
is independent of stiffness ratio. 

When relatively long duration inputs are considered a 

bottoming cushion can have very severe effects on human 
tolerance. The solution developed in Appendix G gives the 
maximum mass acceleration after bottoming as 

This shows that for the condition 
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which is true for all finite values of the frequency ratio, 
the overshoot can exceed 100% which represents a much more 

severe acceleration imposed on the human than when no cushion 
is present. Thus, large bottoming velocities are dangerous 

and if bottoming must occur it should happen as early as 

possible. 

Summarizing, for impulsive inputs a cushion is always 
beneficial and increases the tolerance level; f o r  longer 
duration inputs, the cushion has no influence unless it 
bottoms, in which case considerable magnification of the 
output can occur. These conclusions are presented, in 
graphical form, in Figure 13 and Figure G.4.of Appendix G. 

4.2 -2. Rebound 

The phenomenon termed rebound can occur when the 

acceleration applied to the occupant of a seat is suddenly 

removed and the occupant is thrown into his harness system. 

The undamped linear single degree of freedom model can be 

used to analyze this problem as explained in Appendix H. 
"he body spring goes in to compression in the usual way 
when the acceleration is applied to the seat pan and when the 

input is removed after a time At, the spring returns to its 
original position, but with a certain velocity. At this 
stage, the body spring becomes inoperative and the restraint 
spring starts to compress, decelerating the mass. From 
Equation H.ll the maximum deceleration is given by 

Y ~ ( M ~ K )  = -o( wz Af: 

where W, is the restraint frequency and d is the initial 

step input. This expression is similar to that  derived for 

the impulsive input (Equation D.23 of Appendix D) but 
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4.3 

W ,  is now the  important  parameter. 

m a s s  a c c e l e r a t i o n s  imposed du r ing  the  impact phase and rebound 

r e s p e c t i v e l y  can be formed, v iz .  

The r a t i o  of the  peak 

.. 
y max (rebound) - Cor P - -  
jr;, m a x  ( i n p u t )  w1 

where L3, is t he  frequency of t he  body sp r ing .  

f o r  t h e  mass a c c e l e r a t i o n  i n  rebound can be maximized f o r  a 

p a r t i c u l a r  i n p u t  d u r a t i o n  and "start of rebound" time t o  g ive  

The express ion  

Regarding cc);and W ,  as the  equ iva len t  man-harness and man-cushion 

f r equenc ie s  r e s p e c t i v e l y  , i t  follows t h a t  cons iderable  ampl i f i ca t ion  

of t h e  inpu t  a c c e l e r a t i o n  is p o s s i b l e ,  i f  t he  equ iva len t  r e s t r a i n t  

system is s t i f f e r  than  the  equ iva len t  cushion system. 

m e  Importance of Rise  Time 

An expres s ion  t h a t  o f t e n  appears  i n  the  l i t e r a t u r e  on 

a c c e l e r a t i o n  s t r e s s  is "rate of onse t  of acce le ra t ion"  which 

is u s u a l l y  quoted i n  u n i t s  of G per  sec .  Rate of onse t  has 

f r equen t ly  been used as a c r i t i c a l  parameter i n  determining 

human to l e rance  t o  abrupt  a c c e l e r a t i o n s  and i n  some cases  

t e s t  s u b j e c t s  have r epor t ed  being a b l e  t o  sense  d i f f e r e n t  

o n s e t  r a t e s .  

t he  a c c e l e r a t i o n  response of  the  s u b j e c t  is t he  important  

c r i t e r i o n  and,  i n  t h i s  con tex t ,  t h e  maximum i n p u t  a c c e l e r a t i o n  

and du ra t ion  time are the  important  parameters.  If t he  i n p u t  

a c c e l e r a t i o n  is less  than h a l f  t he  al lowable mass a c c e l e r a t i o n ,  

t he  peak m a s s  a c c e l e r a t i o n  w i l l  never exceed the  c r i t i c a l  va lue  

r e g a r d l e s s  of the  rate of onse t  (e.g. a s t e p  i n p u t  where the  

rate of o n s e t  is i n f i n i t e ) .  When the  i n p u t  a c c e l e r a t i o n  is 

g r e a t e r  than  ha l f  t he  al lowable m a s s  a c c e l e r a t i o n ,  t he  over- 

shoo t  is in f luenced  by t h e  r a t e  of  o n s e t ,  b u t  i t  is more 

e x p l i c i t  t o  r e f e r  t o  the  time taken t o  r each  a c e r t a i n  p l a t e a u  

or  peak va lue ,  i . e .  t he  r ise time f& , s i n c e  t h e  frequency of 

The dynamic model is based on the  concept t h a t  
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the system (cycles per second) is also involved. The 
definition of rise time will be clarified by reference to 

Figures I.l(a> and (b). Rate of onset, in itself, does 
not mean very much unless the peak input acceleration is 

also specified, then - rate of onset x rise time = peak 
input acceleration. 

The simple case of an input consisting of a linear ramp 

function followed by a constant is studied in Appendix I. 
For zero damping, the model response is given by Equation 1.5. 

where/ is the slope of the ramp function, i.e. the rate 

of onset of acceleration. 

When the ramp input is operative, i.e. before the 

acceleration levels off, the mass acceleration is given by 
Equation B.13 as 

This function exhibits no maxima, only points of inflection 

and the acceleration output has the form shown in Figure B.2 
of Appendix B. The fluctuations of the output about the 
input are governed by the values of W andp , overshoot is 
still present in the output, but is combined with an 

increasing input to give the effect shown in the figure. 
The important quantity is the degree of overshoot obtained 

when the input acceleration has levelled off and remained 

constant for a long time. This can be represented by 

Equation 1.8 which gives 
.. 



where n is an i n t e g e r  a n d b t v  

inpu t .  

may be p o s i t i v e  o r  nega t ive ,  depending on t h e  quadrant  

con ta in ing  t h e  ang le  W t , / z .  

t h a t  f o r  n = 1, 

is t h e  p l a t e a u  va lue  of t h e  
wtr The i n t e g e r  n e n t e r s  t h e  expression s i n c e  s i n  -5; 

It is shown i n  Appendix I 

0 & W t ,  5 2 5  

and s o  on. 

i n  Figure 1.2 and the  curve e x h i b i t s  a se r ies  of humps. 

For very small v a l u e s  of wtr ( r e p r e s e n t i n g  a s h o r t  r i se  

time o r  a low frequency system) t h e  overshoot is 100%; 

Ut, i n c r e a s e s , t h e  degree of overshoot dec reases  e v e n t u a l l y  

reaching ze ro  when t h e  output  equa l s  t h e  inpu t .  When Ut*  

is inc reased  f u r t h e r ,  some overshoot is a g a i n  ob ta ined ,  t he  

p a t t e r n  r e p e a t i n g  i t s e l f ,  but  with r a p i d l y  dec reas ing  

amplitude. 

The above expres s ion  i s  p l o t t e d  a g a i n s t  d t r  

as 

For a given system having a c e r t a i n  frequency w ,  t he  

r i s e  t i m e  of t he  i n p u t  is, t h e r e f o r e ,  an important  parameter 

i f  t h e  i n p u t  exceeds h a l f  t he  t o l e r a b l e  output .  For a given 

r i s e  t ime, a low frequency system w i l l  e x h i b i t  g r e a t e r  over- 

shoot  than a high frequency system. These t h e o r e t i c a l  

deduct ions have been f u r t h e r  i l l u s t r a t e d  i n  t h e  analog 

computer s t u d i e s  r e p o r t e d  i n  Sec t ion  7.0. 

The theo ry  i n d i c a t e s  t h a t ,  i f  t he  r i s e  time is  long 

enough, very l a r g e  i n p u t  a c c e l e r a t i o n  can be t o l e r a t e d .  

However, i t  must be remembered t h a t  t h e  p re sen t  model is 

l i m i t e d  t o  s t r u c t u r a l  e f f e c t s  and a l a r g e  r i se  t i m e  means a 

long  t o t a l  d u r a t i o n ,  which invo lves  o t h e r  t o l e r a n c e  c r i t e r i a .  
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4.4 Application to EscapeSystems 

The Jimiting acceleration-time history that is 
permissable, from human tolerance considerations, during 

the ejection phase of an escape capsule or seat has been 

the subject of considerable experimental research, and the 
dynamic model will have important applications in this area. 

Basically, the approach is similar to that described 

in the general applications described so far, but the model 

now consists of two masses coupled together by a spring 
representing the occupant and his cushion (Figure F.1). 
The theory is developed in Appendix F for impulsive and 
continuous inputs. 
experienced by the man for the zero damping case as 

Equation F.8 gives the peak acceleration 

where F is the applied force (constant), mc is the seat, o r  

capsule mass, and m represents the occupant's mass. Now 

F is the acceleration obtained for the system as a 
P 

m + m  
C P 
whole, so the acceleration history calculated by regarding 

the escape system and occupant as a rigid body can be used in 

assessing the occupant's tolerance to the input. 

During the acceleration phase, the occupant provides a 

downward force on the escape device, modifying its accelera- 

tion and it is shown in Appendix F that the ratio of the 
peak accelerations of man and escape device is given by 

. .  

(max) occupant - M P  
= 2 ( r  IT)TMc 

yP 
.. 
yc (max) escape device 

Thus, theli'ghterthe seat or capsule compared to the occupant, 

the lower the relative accelerations, but the peak occupant 
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output is always twice the value calculated for the combined 
masses. When an impulsive input is considered, the system 
can again be treated as a rigid body. 

4.5 The Two Degree of Freedom Model 

The single degree of freedom system does not predict 
the decrease in tolerable accelerations in the higher duration 
time region (from .07 sec. to 1 sec.). The quite rapid drop 
in the tolerance curve suggests that a second lower frequency 
mode exists, and this has in fact been verified by shake table 
tests (Ref. 16). The predominant mode indicated by these 
tests has a frequency of 5 cps. With two distinct modes 
present, it seemed likely that a two degree of freedom model, 
such as that illustrated in Figure 5(c), could be used to 
investigate the dynamics of the body under the influence of 
short duration accelerations. Since data on the dynamic 
properties of various parts of the body is sparse, the 
application of the model was limited to the following two cases: 

1. The upper spring-mass system representing the 
visceral mode of 5 cps, and the lower system 
the spinal mode at 44 cps. 

2. The upper spring-mass system representing the 
thoracic vertebt-ae, and the lower system the 
lumbar vertebrae, (the data given in Ref. 5 being 
used for this application). 

The mathematical analysis of the model is given in 
considerable detail in Appendix J so that only the important 
results need be quoted here. The solution of the equations 
of motion were developed for the zero damping case in order 
to reduce the algebra involved so that the influence of the 
important parameters could be more readily seen. The 
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solution for a step input is of particular interest, since it 
yields all the important information about the response of 

the model. Equations 5.35 and 5.36 give the deflections 

.. 

where SF , and 8% 
spring and Wb and 

are the deflections in the upper and lower 

Ut are the uncoupled frequencies of the 

upper and lower system respectively. f i t  and J?, are the 

coupled frequencies and are given in Equation J.29 and 5.30 
by the expressions 

\ 

= ~ ~ ~ + w ; , w , ; - [ ( w ; + ~ ~ + ~ ~ ~ ~ - ~ r r r i ~ ~ ~  '2 

where W&, = ! ? P O ;  and m and h are the masses associated 

with each spring. 
9 P q 

Since damping has been omitted, it is permissible t o  

express the tolerance criterioh as a limit on deflection in 
either or both springs. 

Time histories of the deflections were obtained for a 
#nq, Wp andW with the range of values of the parameters m 

aid of a digital computer and maximum values of 4$8vG and 
%$/& (the overshoot factors) were obtained from the results. 

The two applications are diecussed separately. 

9 

!% 

1. Model Representing the Visceral and. Spinal Modes 

The spring q is  taken as analagous to the spinal mode 
and the low frequency visceral mode is represented by the 
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s p r i n g  p. For s h o r t  du ra t ion  i n p u t s  t o  the  base of t he  

system the  displacement of the  mass m is q u i t e  small and 

s o  the  d e f l e c t i o n  i n  the  sp r ing  p is  s m a l l ,  g iv ing  r ise t o  

i n s i g n i f i c a n t  f o r c e s  a c t i n g  i n  oppos i te  d i r e c t i o n s  on t h e  

masses m and m r e spec t ive ly .  Hence, t he  f o r c e  a c t i n g  

on the  mass m is v i r t u a l l y  t h a t  of t h e  s i n g l e  degree of 

freedom system. A s  t he  inpu t  du ra t ion  time inc reases ,  

so  the  displacement  of the  mass q i n c r e a s e s ,  which i n  t u r n  

i n c r e a s e s  the  d e f l e c t i o n  and the  f o r c e  i n  the  s p r i n g  p. 

Th i s  f o r c e  is r e a c t e d  back through the  mass q t o  t he  s p r i n g  

q, such t h a t  a l a r g e r  f o r c e  must be app l i ed  t o  the  base of 

t h e  system f o r  a given cons t an t  i npu t  a c c e l e r a t i o n .  The 

b u i l d  up of f o r c e s  wi th in  the  system is revea led  as 

d e f l e c t i o n s  of t h e  s p r i n g  q. A l i m i t  on t h i s  d e f l e c t i o n  

is used as t h e  maintolerance c r i t e r i o n ,  which may be 

r e l a t e d  t o  t h e  l i m i t  on a c c e l e r a t i o n  used p rev ious ly  (80 0 )  

by a p p l i c a t i o n  of t h e  r e l a t i o n s h i p  3 =a; &+. . Values 

of yq ( m a )  w e r e  ob ta ined  f o r  f o u r  ratios of m to  m 
P 9 

s i n c e  the e x a c t  ra t io  is no t  known w i t h  any degree of 

accuracy. 

f o r  each m a s s  rat io and these  va lues  w e r e  used t o  construct 

t h e  curves  shown i n  F igure  14. The f i r s t  m a x i m u m  occurred 

at approximately t = 0.0114 sec.  and w a s  t h e  same for 

each m a s s  ra t io  and equa l  t o  t h a t  for t he  s i n g l e  degree 

of freedom s p i n a l  model. Hence, for t i m e s  less than 

t = 0.0114, t h e  normal s p i n a l  headward t o l e r a n c e  curve 

is app l i cab le .  

9 

P 9 

9 

.. 
9- 

Severa l  m a x i m a  w e r e  ob ta ined  i n  the output  

The ratio of t o  q is q u i t e  important  i n  that 
P q 

as q /m i n c r e a s e s ,  so t h e  tolerable a c c e l e r a t i o n  decreases .  

Neglect ing damping, t h e  m a s s  ra t io  g i v i n g  t h e  b e s t  f i t  to  

the p r e s e n t l y  a v a i l a b l e  d a t a  is m = 1.0. However, for 

P Q  

9 
q 

9 
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d u r a t i o n  t imes of t he  o r d e r  of .O5 sec.  o r  g r e a t e r ,  

damping is important  and with,  s ay ,  15% c r i t i c a l  damping 

i n  t h e  s p i n a l  mode, and some 30% c r i t i c a l  damping i n  

the  v i s c e r a l  mode, then t h e  curves corresponding t o  va lues  

of *e  = 1.5 o r  2 would probably g ive  a b e t t e r  f i t  t o  

t h e  experimental  r e s u l t s .  
6% 

Although these  r e s u l t s  diminish the  durati-on of the 

p l a t e a u  r eg ion  considerably,  they are i n s t r u c t i v e  i n  t h a t  

they g ive  a probable explanat ion of t he  r educ t ion  i n  

t o l e r a b l e  G I s  f o r  d u r a t i o n  t imes of t he  o rde r  of .08 sec.  

2.  application^ t o  - the  Upper ~~ and Low.er.-Spine ~ 

The s t i f f n e s s  and mass d a t a  r e l a t i n g  t o  the  human 

s p i n e  given by Huff (Ref. 5 )  were used t o  e s t ima te  the  

frequency r a t i o  ( 'P/L. . 'q.  and mass r a t i o  ( h p / r n e  ) f o r  the 

two degree of system rep resen t ing  the  sp ine  as two s p r i n g s  

and a s s o c i a t e d  masses i n  s e r i e s .  Values of 0.67 f o r  t he  

frequency r a t i o  and 2.5 f o r  t he  mass r a t i o  were obtained. 

The frequency r a t i o  w a s  assumed t o  be e x a c t ,  but va r ious  

mass ra t io s  i n  the  r eg ion  of 2.5 were assumed i n  view of 

p o s s i b l e  e r r o r s  i n  Ruff ' s  value.  Using va r ious  va lues  

of u p  ( the reby  f i x i n g  and of mass r a t i o ,  t he  d i g i t a l  

computer was used t o  f i n d  maximum va lues  of EP . and 8% - 
$c. 3c 

For inpu t  v a l u e s  of 30, 35 and 40 G (Corresponding t o  

the  known t o l e r a n c e  l e v e l s i n  the  p l a t eau  r eg ion )  va lues  

of &b and 8% were then obtained and p l o t t e d  a g a i n s t  

frequency f o r  each value of mass r a t i o .  

c r i t e r i a  of 6 p  = 0.02 f t .  and 

from R u f f ' s  experi.ments on s p i n a l  breaking loads ,  and i t  

w a s  assumed t h a t  the two p a r t s  of t he  sp ine  f a i l e d  

s imultaneously,  as ind ica t ed  by Ruf f ' s  work. For the  

th ree  mass r a t i o s  used, t h i s  procedure yielded t h r e e  p a i r s  

Tolerance 

6,, = 0.033 f t .  were taken 
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of f r e q u e n c i e s  (and t h r e e  pairs  of f requency  r a t i o s  (a4)) 
f o r  each va lue  of i n p u t  acceleration. 

ratios were then  examined to  de termine  which gave t h e  b e s t  

agreement wi th  R u f f ' s  f i g u r e  of  0.67. It w a s  found that, 

for a l l  a c c e l e r a t i o n  i n p u t s ,  t h e  f requency ratio corres- 

ponding t o  a m a 8 8  r a t i o  of t h r e e  gave the  b e s t  agreement, 

and t h e s e  r e s u l t s  are shown i n  F igu re  15. The a b s o l u t e  

va luee  of f requency obta ined  were then  used to c a l c u l a t e  

the coupled f r e q u e n c i e s  n, 
a c c e l e r a t i o n s  of 30, 35 and 40 G, y i e l d i n g  v a l u e s  of 280, 
300 and 335 rad/sec. ,  r e s p e c t i v e l y .  

(n, ) should be the  same as t h e  frequency deduced for t h e  

s i n g l e  degree  of freedom model. However, exper imenta l  

r e s u l t s  i n d i c a t e  t h a t  t h e  t o l e r a b l e  i n p u t  ( p l a t e a u  r e g i o n )  

is about  40 G ,  and t h e  s p i n a l  f requency is approximately 

225 rad/sec.  

These frequency 

cor responding  to  inpu t  

The coupled frequency 

The r e s u l t s  of t h i s  a n a l y s i s  are n o t  very  encouraging,  

bu t  do p o i n t  t h e  way f o r  more d e t a i l e d  f u t u r e  i n v e s t i g a t i o n s .  

The work of Coermamat W.A.D.D. might w e l l  p rovide  more 

d e t a i l e d  informat ion  on the  mechanical c h a r a c t e r i s t i c s  of 

t h e  body t h a t  could be used i n  t h i s  type  of a n a l y s i s .  

4.6 The Three Degree of Freedom Model 

I n  the  a n a l y s i s  of t he  two degree  of freedom model, t h e  

concept  of a normal (or r e sonan t )  mode w a s  in t roduced.  

degree  of freedom model w a s  de sc r ibed  uniquely  by two such modes. 

The t h r e e  degree  of freedom system may be desc r ibed  by t h r e e  

normal modes and, i n  g e n e r a l ,  t he  number of normal modes r e q u i r e d  

for a f u l l  d e s c r i p t i o n  of t h e  u n i d i r e c t i o n a l  motion of a system 

is the  number of degrees  of freedom i t  possesses .  T h i s  i n  t u r n  

5s  ( g e n e r a l l y )  t he  number of a t t ached  (bu t  no t  r i g i d l y  a t t a c h e d )  

masses comprising the  system. 

The t w o  

I n  Appendix F a system of two 
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masses joined by a spring is analyzed. 

of oscillation of such a system is given by 

The frequency (-1 

where tmc and Mf' are the masses and k is the stiffness of 
the connecting spring. "he effective mass of this simple 

system is m C m P  and is termed the inertia of the system. 
W C + M P  

Several masses, each connected to the adjacent mass by a 
spring and a damper will now be considered. 

of reference,the number of masses shall be n + 1, hence the 
springs and dampers number n of each. 

modes, since the first does not contribute to the number of 

degrees of freedom. For each normal mode there exists an equiv- 

alent mass or inertia, and the general motion of the system is 

a combination of these normal modes of vibration, as was 

illustrated in the solution obtained for the two degree of 

freedom model. Generally, it is found that a system can be 

described practically by a relatively small selection of these 

modes; often only one mode, (that with the lowest frequency, 

referred to as the first mode) will suffice. For example, 

the response of a conventional fixed wing airplane to aileron 

control, and the phenomenon of aileron reversa1,can be explained 

adequately by restricting the deformation of the airplane to its 
first wing torsion mode. Naively, perhaps, the supposition is 

that the response of a complex structure,such as the human body, 

to a very abrupt acceleration (less than .O5 sec.) can be 

represented adequately by the first spinal mode, and for longer 

duration accelerations by the introduction of the first and 

second visceral modes. Each mode is characterized by an 

inertia, a frequency and a damping constant. It is this 
characterization that allows the representation of the human 

body by a simple mass-spring system, or a combinati.nn of such 

systems. 

For convenience 

Such a system has n normal 
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"he development of a three degree of freedom model 
representing the human body subject to spinal accelerations 
was considered sufficient to demonstrate the usefulness and 
limitations of this approach. 

Shake table tests on human subjects have shown that two 
distinct low frequency modes are present in the human body. 
"he frequencies of these modes are five and ten cycles per 
second respectively (these frequencies were suggested by 
Dr. Coermann of W.A.D.D., and are based on experimental 
evidence). Although Coermann measured total body modes, the 
spinal frequency is relatively high, and the two low frequencies 
may be regarded as the natural frequencies of the visceral masses. 

This assumption leads to the model shown in Figure 5 (d), which 
represents a mechanical analogy of the spine and visceral masses. 

The analysis of such a model is dealt with in considerable 
"he deflection ( SI detail in Appendix K. 

spring is obtained for a general rectangular input, and for an 
impulsive input. A solution for a sinusoidal input is also 
developed, usinc the concept of complex numbers to reduce the 
algebra involved. 

in the spinal 

(a) Solution for a Rectangular Input Acceleration 

The general solution for a rectangular input is given 
in Equations K.32 (a) and (b) with damping included in each 
mode. The solution for a step input, which is a special 
case of the rectangular input analysis, is useful since it 
includes all the maxima that can be obtained with various 
duration rectangular inputs and yields sufficient points 
to obtain an accurate graph of the tolerable accelerations. 

The solution for the step input is represented by Equations 
K.32 (for S ,  and K.37 (for 6, and the constants 
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contained i n  t h e s e  equa t ions  are obtained from K . 3 1  
and K.37. 

The c r i t e r i o n  f o r  i n j u r y  i s  expressed as a l i m i t  

on the  f o r c e  (n? g, exe r t ed  by t h e  s p r i n g  and damper 

of c o n s t a n t s  k ,  and 2KI r e s p e c t i v e l y ,  on the  mass - 1  

i . e .  

.. 

tm 9 I ..= k,$, + ~ K , A ,  

This  l i m i t  may be expressed i n  terms of t he  a c c e l e r a t i o n  
.. - - W;t& + 2 c , &  
VI - .. - 

Time h i s t o r i e s  of 3y- were obtained f o r  s e v e r a l  va lues  of 

t h e  damping c o e f f i c i e n t s  Ci. with t h e  a i d  of a d i g i t a l  

computer, and t h e  maximum va lues  obtained by in spec t ion .  

The v a l u e s  of t o l e r a b l e  inpu t  a c c e l e r a t i o n s  given i n  

Fig.  16 were obtained by p u t t i n g  3, (max) = 80 G ,  and 

d i v i d i n g  t h i s  by each maxima of 9, 
damping case does not  d i f f e r  s i g n i f i c a n t l y  from the  

r e s u l t s  p l o t t e d  i n  Fig.  14 f o r  t he  two degree of freedom 

model, and the  conclusion is t h a t  t he  two degree of freedom 

system is s u f f i c i e n t  f o r  a c c e l e r a t i o n s  of l e s s  than s a y  

one second. The e f f e c t  of damping is very pronounced f o r  

d u r a t i o n  times where the  low frequency modes a r e  important.  

From t h e  s i m i l a r i t y  of the undamped case t o  t h a t  of the 

two degree of freedom i t  i s  not  unreasonable t o  suppose 

t h a t  damping w i l l  have a similar e f f e c t  upon the  t o l e r a b l e  

a c c e l e r a t i o n s  p red ic t ed  by the two degree of freedom model. 

Yc 

.. 
.. 

i n  turn.  The ze ro  
% 

( b )  So lu t ion  f o r  a S inuso ida l  -_ Input Accelerat ion 

The response of a s p r i n g  mass system sub jec t ed  t o  a 

s i n u s o i d a l  i npu t  a c c e l e r a t i o n  can be divided i n t o  two 

parts. (See Appendix E) .  

1. The t r a n s i e n t  response with a frequency 

dependent upon the  parameters of t he  system. 



2. The s t e a d y  s t a t e  response wi th  t h e  frequency 

of t h a t  of t he  inpu t  a c c e l e r a t i o n .  

When t o l e r a n c e  t o  long d u r a t i o n  i n p u t s  is considered,  

only the s t e a d y  s t a t e  response is important.  

The equa t ions  governing the  t h r e e  degree of freedom 

model are developed i n  Appendix K. The a p p l i c a t i o n  of 

t h i s  model t o  t h e  human t o l e r a n c e  curve invo lves  c a l c u l a t i n g  

the  r a t i o  R of t h e  ou tpu t  t o  i n p u t  ampli tudes,  given by 

!A0 
L. 

where g C c  is the  amplitude of t he  i n p u t  a c c e l e r a t i o n  and 

/c"i and Uj a r e  t h e  real  and imaginary p a r t s  r e s p e c t i v e l y  
of the output  amplitude A i  and a r e  de f ined  by Equation K.45. 

The r a t i o s  R , ,  R, and R,, corresponding t o  the t h r e e  

modes of vibra . t ion,  were c a l c u l a t e d  on the  d i g i t a l  computer 

f o r  v a r i o u s  inpu t  f r equenc ie s  ( 1  t o  17 cps )  and damping 

va lues  of 15% c r i t i c a l  i n  Mode 1 ( s p i n a l ) ,  3% i n  Mode 2 

(1.0 c p s  v i s c e r a l ) ,  and 25,  30 and 35% i n  Mode 3 ( 5  cps  

v i s c e r a l ) .  

suggested by a survey of expertmental  r e s u l t s .  

These v a l u e s  of damping c o e f f i c i e n t s  were 

The low frequency c r i t e r i a  were taken from the  

t o l e r a n c e  curve of Ref. 16 (Fig. 21), which is r e p l o t t e d  

i n  Fig.  17a. One method used the  t o l e r a b l e  i n p u t  

corresponding t o  the  f i r s t  minimum ( p o i n t  A )  t o  o b t a i n  

a r e fe rence  amplitude f o r  both low frequency modes. I n  

t h e  second method, p o i n t s  A and B were used t o  d e f i n e  

r e fe rence  amplitudes f o r  Modes 3 and 2 r e s p e c t i v e l y .  The 

t o l e r a n c e  l e v e l  for t h e  high frequency mode w a s  e s t a b l i s h e d  by 

assuming a c r i t i c a l  a l lowable d e f l e c t i o n  ( $ 8  t h a t  gave 
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5.0 

t h e  best  f i t  wi th  t h e  curve of Ref. 16. The value of 

&,so  obtained (Fig.  l7.b) was 0.01 f t . ,  which is about 

20% of t h e  s p i n a l  breaking d e f l e c t i o n  f o r  s t eady  loading, 

bu t  i t  must be remembered t h a t  t h e  curves of Ref. 16 are 

based on vo lun ta ry  to l e rance  ( g r e a t e r  than 20 sec. durat ion) .  

The agreement obtained between t h e  theory and t h e  

experimental  r e s u l t s  of Ref. 16 is no t  p a r t i c u l a r l y  good. 

However, t he  experimental  r e s u l t s  may be a t  f a u l t ,  r a t h e r  

than the  theory,  and an eva lua t ion  of the  use fu lness  of t he  

t h r e e  degree of freedom system should await f u r t h e r  develop- 

ments i n  both the t h e o r e t i c a l  and experimental  f i e l d s .  

Non-Linear Systems 

It is  known t h a t  c e r t a i n  p a r t s  of t he  body respond i n  a 

non-linear f a sh ion  i n  c e r t a i n  f o r c e  ranges so  t h a t  t h e  analogous 

l i n e a r  s p r i n g  system r e p r e s e n t s  an i d e a l  case.  I n  a non-linear 

system, equa l  increments o f . a p p l i e d  f o r c e  do not produce equal  

increments of d e f l e c t i o n  and a fo rce -de f l ec t ion  p l o t  does no t  

produce a s t r a i g h t  l i n e .  

up as i n c r e a s i n g  e f f e c t i v e  s t i f f n e s s  as  t h e  app l i ed  f o r c e  inc reases .  

Mathematically, a non-linear s p r i n g  can be r ep resen ted  i n  a 

v a r i e t y  of ways, but  a good approximation i s  t o  r ep resen t  t he  

fo rce -de f l ec t ion  c h a r a c t e r i s t i c s  by the  r e l a t i o n s h i p  

Non-l inear i ty  i n  the  human body shows 

r- = kJh 

where n is an i n t e g e r .  The equat ion of motion now t akes  the  

The s o l u t i o n  of t h i s  equat ion is developed 

a s t e p  i n p u t  and f o r  an impulsive i n p u t  i n  

peak mass a c c e l e r a t i o n  for a s t e p  i n p u t  is 
.. 
(ma) = Cn-c I)o( 

i n  Appendix C 

Appendix D. 

from Equation 

f o r  

The 

c.10 
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and f o r  t he  impulsive case (Equation D.16)  

2 
where Cb = W,. 

i n  t h e  p l a t e a u  region from experiment and assuming a value 

of n ,  t h e  s t e p  inpu t  formula g i v e s  a value f o r  t he  allowable 

peak mass a c c e l e r a t i o n .  N o w  t he  expression desc r ib ing  t h e  

impact case can be rearranged to  g ive  

Knowinp; t h e  maximum allowable value of o< 

which can be used t o  r ep resen t  t he  to l e rance  curve i n  t h e  

impact region of Figure 2 f o r  any value of n ,  s i n c e  

A p l o t  of lop; o( a q a i n s t  log A t  would give a s t r a i g h t  l i n e  

of s lope  -1, the  a c t u a l  p o s i t i o n  of t h e  l i n e  being c o n t r o l l e d  

by the  value of the remaining expression i n  t h e  above 

equation. Using the al lowable val.ue of the mass acce le ra -  

t i o n  ( n  + l > d ,  where c4 i.s obtained from experiment 

( p l a t e a u  region of Fi-gure 21, r e s u l t s  i n  c e r t a i n  va lues  of 

( o r  CC, ) corresponding to  t h e  chosen value of n. For 

headward a c c e l c r a t i o n s ,  drop t e s t s  'have shown t h a t  t h e  

c r i t i c a l .  impulsive v e l o c i t y  chanFe is 1.1 f t / s e c . ,  and us ing  

the  maximum permissible  sp ine  deflccti .on of 0.05 f t . ,  a s  

deduced 3v R u f f  (Ref. 51, va lues  of the "equivalent  l i n e a r  

s p r i n g  frequency" can be deduced corresponding t o  v a r i o u s  

va lues  of n. Such a value would correspond t o  a l i n e a r  

model t h a t  would p r e d i c t  t.hc c o r r e c t  cond i t ions  a t  maximum 

d e f l e c t i o n .  I n  view of wha.t has  been s a i d  above, and the 

accuracy of the a v a i l a b l e  experimental  r e s u l t s ,  i t  is 

considered t h a t  a s t r i c t l y  l i n e a r  model (n  = 1 )  is adequate 

f o r  t he  p re sen t  s t u d i e s .  
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6.0 % i t a 1  Computer S t u d i e s  

The e q u a t i o n  of motion f o r  t h e  undamped, l i n e a r  sing1.e 

degree of freedom model is 

= " 6  + i ti, 
where t h e  i n p u t  a c c e l c r a t i o n  y 

on the c o n d i t i o n s  of t he  case  under c o n s i d e r a t i o n .  For 

simple i n p u t  forms t h a t  can be approximated by a concise  

mathematical  formul.ae, t he  equat ion of  motion can be solved 

by a n a l y t i c a l  methods, a s  demonstrated p rev jous ly .  When t h e  

i n p u t  i s  of a complex n a t u r e  - t h e  c a s e  u s u a l l y  met i n  

p r a c t i s e  - t h e  s o l u t i o n  must be obtained by an i t e r a t i v e  o r  

step-by-,Ttep procedure.  

t e d i o u s  and time consiming i f  performed by hand, s o  one 

normally s e e k s  the  a i d  of an automatic  d i g i t a l  ccmputer. 

can t ake  any form, depending 
C 

Such a procedure can be exceedingly 

The S tan ley  Aviation I R M  1620. computer has  been programmed 

t o  s o l v e  t h e  equat ion of motion of a l i n e a r  s i n g l e  degree of 

freedom system f o r  any a r b i t r a r y  a c c e l e r a t i o n  or f o r c e  inpii t .  

me progras  u s e s  t he  Fort.ran system and i s  qui.te general  i n  
t h a t  t he  c o e f f i c i e n t s  r e l e v a n t  t o  t h e  p a r t i c i i l a r  problem can 

be used. The equa t ion  of motion is solved f o r  t h e  de f l . ec t ion  

( 6 )  which is then r e l a t e d  t o  the mass a c c e l e r a t i o n  <? ) by 

the  expres s ion  
P 

.. 

The results are presented on  a ca rd  output.,  i n  a form 

s u i t a b l e  f o r  aiit.omatic p l o t t i n g  on R Benson-L?hner d a t a  

p l o t t e r ,  and con ta in  jnformation on 6 , 6 ,  8 and j ;  
time. The machine employs D t i m e  int .erva1 t h a t  i s  ailtomat- 

ical ' l ,y adji isted t o  g i v e  the d e s i r e d  ~ I C C I I ~ ~ C Y  of - t yk i n  t,he 

r e s u l t ,  w h i c h  means t h a t  q u i t e  C O i n p l E ? x  i r?pi i ts  can be ) I s r id l ed .  

a g a i n s t  r! 



The time involved i n  ob ta in ing  a s o l u t i o n  using the  computer 

v a r i e s  from 15 t o  30 minutes, depending on the  complexity of 

t h e  i n p u t  accelerat ion-t ime h i s t o r y .  

time p l o t  is s t u d i e d  t o  e s t a b l i s h  i f  t he  peak a c c e l e r a t i o n  

exceeds t h e  al lowable value f o r  t h e  p a r t i c u l a r  d i r e c t i o n  of 

a p p l i e d  inpu t .  

The mass acce le ra t ion -  

A t y p i c a l  a n a l y s i s  is shown i n  Fig. 18. The example 

used is taken from t h e  t e s t  program being c a r r i e d  ou t  on t h e  

Daisy Track s l e d  a t  Holloman A.F.B. 

male b e a r  (Run No. 390) f u l l y  r e s t r a i n e d ,  and t h e  a c c e l e r a t i o n  

w a s  measured on a r i g i d  p o r t i o n  of t h e  s l e d  and no cushion 

w a s  p r e sen t .  The output  shown i n  Fig.  18 r e p r e s e n t s  t h e  

response of t h e  equivalent  spring-mass system, using a frequency 

of 278 rad/sec. ( s p i n a l  mode). The high frequency peaks 

appearing i n  t h e  inpu t  might be instrument  "hash" and have very 

l i t t l e  e f f e c t  on t h e  ou tpu t ,  which exceeded 80 G ,  t h e  c r i t i c a l  

mass a c c e l e r a t i o n  deduced from Eiband's work. The s u b j e c t  

d i d  i n  f a c t  i n c u r  a s p i n a l  i n j u r y  during t h e  t e s t .  

The s u b j e c t  was a 

The d i g i t a l  computer h a s  a l s o  been used with t h e  two and 

t h r e e  degree of freedom models, bu t  only f o r  l i m i t e d  inpu t  forms. 

7.0 Analog Computer S t u d i e s  

A s p e c i a l  purpose analog computer has  been developed a t  

S tan ley  Aviation t o  a i d  i n  the s tudy  of human to l e rance  t o  s h o r t  

d u r a t i o n  a c c e l e r a t i o n s .  Although t h i s  computer was developed 

o u t s i d e  t h e  N.A.S.A. research program, a b r i e f  d e s c r i p t i o n  of 

t h e  device is necessary,  s i n c e  i t  w a s  used i n  the  a n a l y s i s  of 

some of  t h e  experimental  da t a .  

The analog computer is capable  of s o l v i n g  the  equat ion 

governing the motion of a spring-mass system i n  a continuous 

fashion by ope ra t ing  on an app l i ed  vo l t age  inpu t  t h a t  s imula t e s  



the applied acceleration.. Using the D.C. operational amplifier 
as the basic component, the electronic network can be arranged 

to perform multiplication, summation and integration of the 
voltages in the circuit. Thus, mathematical operations can be 

performed on the voltage that are analogous to the operations 
necessary for the solution of the equation of motion of the 

mechanical model. 

The basic principles of the analog circuit are illustrated 
by Fig. 19, where an electronic network is arranged to solve 
the equations pertaining to a single degree of freedom model 

with damping. Fig. 20 shows an experimental arrangement, 

where the input is read directly from a given trace, represented 
by a current carrying wire. 
trace and generates a voltage proportional to the magnitude of 

the acceleration. This voltage is fed into the analog circuit 

and the output voltage (equivalent to the mass acceleration) is 
presented on a cathode ray tube. The analog can work in real 

time or a "scaled time" depending on the time constants of the 

net work. 

A magnetic pick-up follows the 

The influence of rise time on the response of the spring- 
mass system has been investigated using the analog. 

tests were conducted in the course of a check out on the 

accuracy of the computer and should not be regarded as 

confirmation of the theory, since the computer only performs 
the operations suggested by the theory. In this respect it 
is only as good as the theory that governs the dynamic model. 
Some computer outputs are shown in Figs. 21 and 22. These 

are direct traces of pictures taken of the cathode ray tube 

during a test, using a Polaroid camera, and show the input 

acceleration and the mass acceleration determined by the analog. 
The scale used for the output is half that used for the input 

so overshoot was attained in each case. Fig. 21(a) illustrates 

These 
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the output obtained using a step input and zero damping; 
error involved is about 3%. 
Fig. 21(b) refer to another Daisy Track experiment (Run N0.389). 
The input acceleration was applied in the headward direction 
and reached over 50 G. 
injuries that would be expected from the peak mass response of 
over 80 G. 
the tests when the variation of ri6e time was investigated. 
A ramp input function followed by a constant value was used 
and the peak mass accelerations obtained gave good agreement 
with the theory, showing that the accuracy of the analog 

analysis is quite acceptable. (Fig. 22 (b)). 

the 
The results presented in 

The bear subject received spinal 

Fig. 22(a) shows a typical trace obtained during 

The main advantage of the analog technique is that the 
characteristics of the mechanical system can be varied at 
will by adjusting the equivalent parameters in the analog. 
Such important parameters as restraint and cushion character- 
istics and body postion can be optimized without resorting 
to expensive and time-consuming test programs. With this in 
view, a more advanced computer, including cushion and restraint 
characteristics, is presently being developed by Stanley 
Av ia t ion. 

8.0 Analysis of..Ekperimental Data 

8.1 Ava-i-lability of Data 

One of the disappointing aspects of this program is the 

dearth of usable experimental information. 
evidence exists that vehicle accelerations of up to 30 G can 
be withstood for duration periods of up to YlOth of'a second 
in the spinal and transverse directions, but the vital areas 
of interest, including the plateau region covering a range of 
input values from 30 to 50 G, and the impulse region for input 

accelerations exceeding 50 G, have not been adequately explored. 

Considerable 
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This  is understandable  from the na tu re  of t h e  experiments and 

the  need f o r  u s ing  human s u b j e c t s  t o  get  r e a l i s t i c  d a t a ,  and 

much of t h e  information t h a t  does e x i s t  is based on animal t e s t  

s u b j e c t s  chosen because some degree of s i m i l a r i t y  of body 

s t r u c t u r e  e x i s t s  between the  animal and man. Thus, b e a r s ,  

chimpanzeestand t o  a l e s s e r  e x t e n t  hogs, have been used. 

Another d i s a p p o i n t i n g  f e a t u r e  of t h e  experimental  program is 

t h e  l a c k  of e x i s t i n g  methodical documentation of t e s t s  t h a t  

were c a r r i e d  out some y e a r s  ago. I n  many i n s t a n c e s ,  when 

information w a s  r eques t ed  on t e s t s  t h a t  were appa ren t ly  of 

extreme i n t e r e s t ,  it. was found t h a t  comprehensive r eco rds  of 

t h e  tests d i d  n o t  e x i s t ,  o r  had been destroyed.  

I n  e a r l y  experiments,  f o r  i n s t a n c e  the  German work and 

t e s t s  c a r r i e d  out by the  Naval A i r  M a t e r i a l s  Laboratory,  m a n y  

of the i n j u r i e s  were s u s t a i n e d  a t  r e l a t i v e l y  low G va lues  

due t o  inadequate  r e s t r a i n t .  The experimental  programs were 

designed t o  meet t h e  immediate needs t h a t  e x i s t e d  a t  the time, 

and t h e r e  was very l i t t l e  s t a n d a r d i z a t i o n  of i npu t  a c c e l e r a t i o n  

p a t t e r n ,  r e s t r a i n t  system, seat and in s t rumen ta t ion .  Thus, 

many of t h e  r e s u l t s  obtained a r e  l i m i t e d  by t h e  l a c k  of reproduc- 

i b i l i t y  and t h e  absence of s t r i c t l y  c o n t r o l l e d  cond i t ions ,  and 

t h e  information of i n t e r e s t  i n  an eva lua t ion  of t h e  dynamic 

model is masked by a v a r i e t y  of f a c t o r s .  

The problem of in s t rumen ta t ion  is always p resen t  i n  human 

f a c t o r s  experiments and much of t he  e a r l y  work p r e s e n t s  

c o n f l i c t i n g  r e s u l t s  because of the i n a b i l i t y  t o  measure the 

r e l e v a n t  parameters with any degree of accuracy. Accel- 

erometers  a r e  extremely s e n s i t i v e  t o  t h e i r  immediate environment 

and good mounting and attachment a r e  e s s e n t i a l .  In  many c a s e s ,  

t he  instrument  can record the p e c u l i a r  response of t he  mount 

r a t h e r  than the  gross a c c e l e r a t i o n s  impo:;ed on t h e  veh ic l e  a n d ,  

i n  some c x p e r i a e n t a l  arrangements, rer,onance v i b r n t i  ons can be 

s e t  up i n  t he  main s t r u c t u r e  (sometimes termed ringing) which 
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aga in  g i v e s  an erroneous response. The response of an 

accelerometer  of a c e r t a i n  n a t u r a l  frequency i s  analagous t o  

t h a t  of t he  spring-mass model', so t h a t  overshoot can occur i n  
a similar manner, depending on t h e  d u r a t i o n  and frequency of 

t h e  app l i ed  a c c e l e r a t i o n .  Rigid mountings are t h e r e f o r e  

e s s e n t i a l .  t o  o b t a i n i n g  r e l i a b l e  readings.  For t h i s  reason, 

a c c e l e r a t i o n s  measured on t h e  human body diiring t e s t s  are 

h igh ly  suspec t  and should only be regarded as i n d i c a t i v e  of 
t r e n d s  r a t h e r  t han  t h e  a c t u a l  a c c e l e r a t i o n  of t h e  p a r t  of 

t h e  body be ing  i n v e s t i g a t e d .  

A l l  t h e  agenc ie s  known t o  be a c t i v e  i n  t h e  f i e l d  of 

experimental  a c c e l e r a t i o n  stress were con tac t ed  i n  an a t t empt  

t o  o b t a i n  as  much experimental  information as poss ib l e .  The 

bulk of t h e  usab le  r e s u l t s  came from the  work of Stapp c a r r i e d  

o u t  a t  Edwards A.F.B., with a rocket-s led,  and t h a t  of Beeding 

a t  Holloman A.F.B., u s ing  the pneumatically p rope l l ed  Daisy 

Track s l e d .  A summary of t h e  agenc ie s  contacted and the  

r e s u l t s  ob ta ined  is given i n  Table 1. Because of the sho r t age  

of r e s u l t s ,  t h e  a n a l y s i s  of experimental  d a t a  w a s  r e s t r i c t e d  t o  

those r e l a t i n g  t o  a p p l i e d  a c c e l e r a t i o n s  i n  t h e  s p i n a l  headward, 

t r a n s v e r s e  backward, and t r ansve r se  forward d i - r ec t ions .  Much 

of t h e  experimental  information used w a s  taken from t h e  

l i t e r a t u r e  which is  referenced i n  t h i s  r e p o r t ,  and the d a t a  

used that. is n o t  r e a d i l y  a v a i l a b l e  is  summarized i n  Appendix L. 

8.2 Sp ina l  Headward Data 

The l o g i c a l  s t a r t i n g  p o i n t  f o r  t h e  a n a l y s i s  of t he  headward 

a c c e l e r a t i o n  is t h e  d a t a  presented by Eiband (Ref. 2) .  A s  

d i scussed  i n  Sec t ion  2.2, Eiband's method of p r e s e n t a t i o n  of 

t h e  r e s u l t s  is h igh ly  s u b j e c t i v e ,  s i n c e  no f i r m  c r i . t e r i a  weye 

used i n  a s s i g n i n g  0 l e v e l s  and diiration times. Eiband's a c t u a l  

r e s u l t s  are p l o t t e d  i n  Fig. 2 ,  and apa in  i n  Fig. 23, where 

the  n o t a t i o n  used j n d i c a t e s  t h e  soiirce of t h e  infornmtion, t h e  
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run  i d e n t i f i c a t i o n  number, and t h e  type of a n a l y s i s  used. 

Thus, Eiband 's  o r i g i n a l  r e s u l t s  have t h e  l e t t e r  E a f t e r  t he  

run  number (see Table 2). 

us ing  e x a c t l y  the  same technique as t h a t  used by Eiband, 

e l imina t ing  some information t h a t  w a s  considered u n r e l i a b l e ,  

e.g. where more than one po in t  on the  graph had been deduced 

from a s i n g l e  end-point experiment,  

as o b j e c t i v e l y  as p o s s i b l e  and the  d i sc repanc ie s  between the  

r e s u l t s  and the  o r i g i n a l  deduct ions s e r v e  t o  i l l u s t r a t e  t he  

need f o r  a more exac t  method of a n a l y s i s  of t h e  r e s u l t s .  

Eiband 's  r e s u l t s  have been supplemented by t h e  a d d i t i o n a l  

d a t a  t h a t  w a s  a v a i l a b l e ,  and can be i d e n t i f i e d  by the  symbol 

These r e s u l t s  were re-analyzed 

The a n a l y s i s  w a s  performed 

E: 

Consider ing the  p l a t eau  reg ion ,  a l though the  information 

is l i m i t e d ,  t h e r e  is some evidence of t h e  to l e rance  l i n e  

l y i n g  j u s t  above the  40 G inpu t  a c c e l e r a t i o n  l e v e l ,  and i n  

view of t he  accuracy of t he  d a t a ,  40 G appears  t o  be a reasonable  

value.  

model, t h e  a l lowable  peak mass a c c e l e r a t i o n  is taken as 80 G. 

The p o s i t i o n  of t h e  to l e rance  curve i n  the  impulse reg ion  

c o n t r o l s  t he  value of t h e  r a t i o  G (max>/w f o r  t he  dynamic 

model. The s lope  of t he  l i n e ,  from s i n g l e  degree of freedom 

theory  is - 1, and f i t t i n g  a l i n e  t o  t h e  experimental  d a t a  

g i v e s  a value f o r &  . 
278 rad/sec.  

Since t h i s  r e p r e s e n t s  h a l f  t h e  maximum response of t h e  

P 

The va lue  deduced f o r  W is then 

A method suggested f o r  s t anda rd iz ing  the  a n a l y s i s  c o n s i s t s  

of compar.ing the dynamic model output  ob ta ined  with a 

p a r t i c u l a r  t e s t ,  with t h a t  from a s tandard  inpu t .  I n  the  

p l a t eau  r eg ion ,  an equiva len t  r ec t angu la r  i n p u t ,  of du ra t ion  

A t  and inpu t  a c c e l e r a t i o n  G w a s  deduced. To do t h i s ,  t he  

output  of t he  undamped, l i n e a r ,  s i n g l e  degree of freedom model 

w a s  ob ta ined  us ing  the  system c h a r a c t e r i s t i c s  deduced above. 

The equ iva len t  rectangul.ar input  is then one which g i v e s  t he  

same peak mass a c c e l e r a t i o n  (assuming 100% overshoot)  and the 

C '  



same v e l o c i t y  change ( G  t ) .  ?'he i n p u t  a c c e l e r a h o n  and 

d u r a t i o n  time of t h e  equ iva len t  r e c t a n g u l a r  i n p u t  are then 

used as the parameters  for p l o t t i n g  on the  t o l e r a n c e  curve. 

C 

I n  the  impulse r eg ion ,  f u l l  overshoot is n o t  a t t a i n e d  and 

ano the r  c r i t e r i o n  is  necessary.  The r i se  t i m e  is very s h o r t  

and the  i n p u t  w a s  considered r ec t angu la r .  Using t h e  peak 

i n p u t  a c c e l e r a t i o n  from the  experiment an equ iva len t  rect- .  

angu la r  i n p u t  w a s  cons t ruc t ed  where the  dynamic response w a s  

t h e  same as t h a t  obtained from the experimental  a c c e l e r a t i o n  

t i m e  h i s t o r y .  The d u r a t i o n  of t h e  equj-valent r ec t angu la r  

pulse  w a s  then taken as h t  f o r  p l o t t i n g  purposes. Incons i s t -  

e n c i e s  due t o  the  f i n i t e  r i s e  time can be removed by comparing 

the experimental  v e l o c i t y  change with t h a t  obtained from the  

equ iva len t  r e c t a n g u l a r  i n p u t ,  and a d j u s t i n g  the  value of Gc 

used u n t i l  agreement is  obtained between t h e  two v e l o c i t y  

changes. The r e s u l t s  obtained from t h i s  a n a l y s i s  are p l o t t e d  

i n  Fig.  23 and denoted by the  l e t t e r  S. Fig. 24 i l l u s t r a t e s  

t he  d e f i n i t i o n s  used. 

The gene ra l  e f f e c t  of t h i s  procedure is t o  move t h e  

experimental  p o i n t s  t o  t h e  r i g h t ,  implying t h a t  t he  e f f e c t i v e  

inpu t  a c c e l e r a t i o n  w a s  of lower magnitude but  l a s t e d  f o r  a 

longe r  t i m e  than assumed i n  the o r i g i n a l  p l o t .  Only one p o i n t  

(S5O.S) remains i n  the  impulse reEion - meager evidence f o r  

f i x i n g  the p o s i t i o n  of t he  to l e rance  l i n e .  T h i s  run concerned 

a hog experi-ment t h a t  showed a severe end p o i n t  and a two inch  

l a y e r  of styrafoam r e s t r a i n t  w a s  used t h a t  d i d  not  bottom o u t  

du r ing  the  run. So even t h i s  po in t  cannot be regarded as 

r e l i a b l e .  The procedure f o r  f i n a l l y  f i x i n g  t h e  p o s i t i o n  of t h e  

impulse t o l e r a n c e  l i n e  should now proceed by a n  i t e r a t i v e  

p rocess  - o b t a i n i n g  the n e w  frequency and e v a l u a t i n g  t h e  

equ iva len t  r e c t a n g u l a r  i npu t  and so on - u n t i l  agreement is 

obtained between the cal cul.ated a n d  assumed frequency. However, 

i n  view of t he  unrel iabi . l . i ty  of the experjmental  p o i n t ,  



t h i s  procedure w a s  no t  adopted' and evidence from another  

source w a s  sought.  

Simple drop t e s t s ,  i f  p rope r ly  c o n t r o l l e d ,  can provide 

extremely va luab le  r e s u l t s  i n  the  impulse r eg ion ,  a l s o  

acc iden t  d a t a  such as those  r epor t ed  i n  Ref. 29 can be 

consu l t ed ,  but  t he  l a t t e r  r e l y  on deduced informat ion  and 

the  degree of i n j u r y  u s u a l l y  g r e a t l y  exceeds t h e  to l e rance  

l e v e l  used here .  Accident data are a l s o  d i f f i c u l t  t o  analyze 

from t h e  p o i n t  of view of app l i ed  f o r c e  d i r e c t i o n .  Experiments 

conducted by Swearingen and r e p o r t e d  i n  Ref. 22 appear  t o  g ive  

the  most r e l i a b l e  impact r eg ion  r e s u l t s .  The s a f e  l i m i t  
suggested from a l a r g e  number of drop  t e s t s  c a r r i e d  out  with 

human s u b j e c t s ,  s e a t e d  on r i g i d  s e a t s ,  corresponds t o  an 

impulsive v e l o c i t y  change of 11.35 f t .  p e r  s ec .  From 

Equation D . 2 3  of Appendix D, t h i s  v e l o c i t y  change is given by 

0 (max) = W A V  , which g i v e s  a va lue  of t h e  frequency of t he  

equ iva len t  s p i n a l  s p r i n g  of W = 226 rad/sec.  Human drop 

t e s t s  c a r r i e d  out  a t  S tan ley  Aviat ion have i n d i c a t e d  t h a t  

v e l o c i t y  changes up t o  10 f t / sec .  can e a s i l y  be t o l e r a t e d ,  

whereas S tapp  (Ref. 18) has  claimed a v e l o c i t y  change of 

17.25 f t / s ec .  had no s e r i o u s  e f f e c t s  on a hog s u b j e c t  (Run 49) 
but  f u l l ' i n f o r m a t i o n  on t h i s  t e s t  is no t  a v a i l a b l e .  

P 

I f  t h e  lower va lue  of spinal. f requency (226 rad/sec.)  

is accepted ,  t he  in f luence  on t h e  model ou tput  f o r  impulsive 

i n p u t s  can be v i s u a l i z e d ,  s i n c e  the  maximum a c c e l e r a t i o n s  

produced f o r  two d i f f e r e n t  f r equenc ie s  is i n  the  r a t i o  of those 

f r equenc ie s  f o r  a g iven-dura t ion  time. 

va lue  impl i e s  l e s s  overshoot and h igher  t o l e r a b l e  i n p u t  

a c c e l e r a t i o n s .  I n  the  p l a t e a u  r eg ion ,  a r educ t ion  i n  

frequency means a r a i s i n g  of t he  t o l e r a b l e  inpu t  l e v e l  due t o  

the  i n c r e a s e  i n  overshoot when s tudy ing  the  experimental  r e s u l t s  

which have a f i n i t e  r i s e  time. 

A lower frequency 



The t o l e r a n c e  l i n e  f o r  d u r a t i o n s  g r e a t e r  t han  those 

contained i n  t h e  p l a t e a u  region has been sketched i n  as 

shown on Fig.  23. The s lope  h a s  been taken as - 1, s i n c e  

the  two degree of freedom model h a s  i n d i c a t e d  t h a t  t h i s  is 

t h e  r i g h t  o r d e r  and might even be g r e a t e r ,  depending on t h e  

r e l e v a n t  mass r a t i o  (see Sec t ion  4.5). 

8.3 Transverse Backward Data 

When the  d i r e c t i o n  of t h e  a c c e l e r a t i n g  f o r c e  is at r i g h t  

ang le s  t o  t h e  body and towards the  rear of t h e  body i t  is 

termed backward. Th i s  type of a c c e l e r a t i o n  is encountered 

during d e c e l e r a t i o n  when the  occupant of t he  v e h i c l e  is  i n  
the  forward f a c i n g  p o s i t i o n .  It w a s  found t h a t  more informa- 

t i o n  e x i s t e d  on t h i s  d i r e c t i o n  than any o t h e r ,  but  evidence 

w a s  aga in  spa r se  i n  t h e  impulsive region.  Fig.  25 summarizes 

the a v a i l a b l e ,  u sab le  d a t a  on a p l o t  p r e s e n t i n g  v e h i c l e  

a c c e l e r a t i o n  a g a i n s t  d u r a t i o n  time. 

The o r i g i n a l  Eiband to l e rance  curve d i d  not show a p la t eau  

because of the l a c k  of d a t a ,  bu t  a reasonable  value f o r  t he  

maximum i n p u t  a c c e l e r a t i o n  i n  t h i s  r eg ion  appeared t o  be 40 G. 

Using t h i s  va lue ,  t he  information contained i n  p o i n t  D.E and 

the  expected s l o p  of - 1, g i v e s  a value of 33 rad/sec. f o r  t he  

equ iva len t  system frequency. However, u s ing  t h e  p o i n t  s 2 6 ~ ,  

t he  frequency obtained i s  134 rad/sec. 

acc iden t  ( f a l l )  evidence and should be w e l l  w i th in  t h e  end 

po in t  r eg ion ,  whereas S26E w a s  obtained from S t a p p ' s  hog 

experiments where the  a c c e l e r a t i o n  v a l u e s  were taken from 

a n  instrument  mounted on the seat bottom. The a c c e l e r a t i o n  

obtained does not ag ree  with t h e  measured v e l o c i t y  change, 

which appears  t o  be f a i r l y  r e l i a b l e ,  and is probably an over 

estimate. Thus, from a f i r s t  eva lua t ion  of Eiband 's  r e s u l t s ,  

i t  w a s  decided t o  use = 134 rad/sec. i n  ob ta in ing  the 

equ iva len t  r e c t a n g u l a r  input .  Kornhauser (Ref. 30) has 

Point  D.E is based on 
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suggested a critical velocity change of 80 ft/sec. and 
assuming a cf (max) of 80 gives a frequency of 32 rad/sec. 
line is shown in Fig. 25 and coincides with that based on 
accident data, which is not surprising. However, the 
Kornhauser figure is based on survival data, which involves 
a more severe tolerance criterion than that used here. 

This 
P 

As further data became available and was analyzed by ' 
the Eiband method (points E I f  it was apparent that this method 
of analysis indicated a lowering of the tolerance level in 
the plateau region (approx. 35 (3). 

experiment from the Holloman data (H675E') did not appear 

to fit into the general pattern and indicated a very low 

tolerance level. However, the subjectused in this test 
had an abnormally long torso and a very tight shoulder strap 

arrangement had to be used. This pre-stressing of the spine 

in a direction at right angles to the acceleration appears to 
have lowered the tolerance limit, and this test should be 

discounted. 

One particular end point 

When the equivalent rectangular input analysis was 
applied to the data in an attempt to standardize the criterion 

and take account of the rise time effects, most of the points 

in the plateau region were moved to the right into the long 
duration regime as shown in Fig. 25. "his meant that a new 

plateau tolerance level had to be determined, and this was 

deduced to be about 45 G. The impact points were also moved 

to the right and the points of S26S and S27S controlled the 
position of the tolerance line in the impulsive region. 
(Note ,526s was calculated from acceleration data measured by 

the accelerometer placed on top of the seat, which correlates 

with the velocity change and corresponds to the lower point 

S26E' in Fig. 25). 
found to be approximately 95 rad/sec. 
process was considered to be unnecessary as the position change 

The most reasonable value for Lu was 

Continuing the iterative 
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introduced is not greater than the accuracy of the original 
experiments. 
w P 95 rad/sec. is 30.5' ft/sec. A tentative tolerance curve 
is shown by the full line in Fig. 25. 

The impact velocity change corresponding to 

The tolerance lines of Fig. 25 are presented, in the manner 
used by Kornhauser (Ref. 301, in Fig. 27. 
ing duration time8 in Ref. 30 were found to be in error and 

have been recalculated f o r  uae here. 
the two sets of results is evident, except in the impulse 
region (0 - 0.02 sec.) where Kornhauser accepted a greater 
permissible velocity change than that used in this report, 

The lines represent- 

Good agreement between 

8.4 Transverse Forward Data 

The available data from experiments performed with the 
acceleration vector in the transverse forward (or sternumward) 
direction is given in Fig. 26. 

none of which is deemed as particularly reliable. Some tests 
at Holloman A.F.B. have been conducted with the subject in the 
rearward facing position (acceleration forward) but as 
comparatively low G values. 
interest. since it represents a definite end point and even on 
the equivalent rectangular input analysis the point appears to 
indicate a much lower tolerance level than for other input 
directions. Other tests under similar conditions (e.g. Run 332* 
peak (3 's  37.5 and Run 337, peak G ' s  39.0) indicate near end 

point conditions, but unfortunately the acceleration traces for 
these runs are not available. A n  explanation for this low 
tolerance level might lie i.n the fact that the subjects were 
inclined at loo to the direction o f  the acceleration, giving 
an upward component that mi.ght have a strong influence on the 
body organs. In experiment S39S, the subject (a chimpanzee) 
received no injuries but obviously suffered pain and hydraulic 

effects would be difficult to determine. 

Very little evidence exists, 

Experhent H.335 is of particular 
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I f  i t  i s  assumed t h a t  t h e  frequency involved is t h e  same 

as t h a t  f o r  the backward d i r e c t i o n ,  t he  impulse r eg ion  can be 

def ined by t h e  l i n e s  shown i n  Fig.  26, t h e  p o s i t i o n  depending 

on t h e  value of G (max) used. 

(u s ing  W = 134 rad/sec.)  was app l i ed  t o  the  d a t a  and the  end 

p o i n t  experiment ~ 3 8 ~  w a s  found t o  l i e  beyond a l l  t h e  to l e rance  

l i n e s  and s o  does not  h e l p  much i n  the f i n a l  choice of l ine .  

I f  experiment H.335 can be ignored as a s t a t i s t i c a l  f l u c t u a t i o n  

i t  appears  l i k e l y  t h a t  t he  to l e rance  l i m i t s  are similar t o  

those f o r  t h e  backward d i r e c t i o n ,  bu t  enough evidence does not  

e x i s t  t o  draw even t e n t a t i v e  conclusions.  

"he equ iva len t  i n p u t  a n a l y s i s  
P 

The S tan ley  " s t a t i c "d rop  t e s t s  (Appendix L) i n  which the  

fo rce  w a s  i n  t h e  forward d i r e c t i o n ,  showed t h a t  v e l o c i t y  

changes of up t o  28 f t / s ec .  d id  not  produce any s i g n s  of an 

end p o i n t ,  which i n d j c a t e s  equ iva len t  s p r i n q  f r equenc ie s  of 

W = 80.5 ( G  max = 701, w = 92 (G max 5 80)  and 

W = 103.5 (G  max 2 90)  r a d i a n s  p e r  second. Since no 

i n j u r i e s  were incu r red ,  the al lowable v e l o c i t y  change might be 

h ighe r ,  which would reduce the  f r equenc ie s  quoted above. Due 

t o  the a t t e n u a t i o n  system extending the pulse  du ra t ion  i n  these  

tes ts ,  and the  i n a c c u r a c i e s  of the recording instruments ,  some 

d i f f i c u l t y  is encountered i n  p o s i t i o n i n g  them on the  to l e rance  

curve,  but  they appear t o  be on the border of t he  impulse and 

p l a t e a u  r eg ions  and cannot be considered as concrete  evidence. 

P P 

P 

8.5 Mu1 t i - D i r - c  t i o n a l  Accelerat ions ___..- .__ 

Although the  s tudy  of t he  in f luence  of mul t i -d i r ec t iona l  

a c c e l e r a t i o n s  on the  human body is not  p a r t  of t h e  program 

descr ibed h e r e ,  a b r i e f  d e s c r i p t i o n  of the experimental  r e s u l t s  

obtained a t  S tan ley  Aviation is of i n t e r e s t .  
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A l a r g e  number of drop t e s t s  were c a r r i e d  ou t  i n  support  

of t he  B-58 escape capsule  development procram. 

included capsule  drops from moving t rucks  and experiments 

performed with a monorail f a c i l i t y  t h a t  enabled a known 

v e r t i c a l  and h o r i z o n t a l  v e l o c i t y  t o  be imparted t o  the  capsule.  

A y i e l d i n g  metal a t t e n u a t o r  w a s  used t o  minimize the  impact 

f o r c e s  experienced by t h e  occupant, and accelerometers  were 

mounted on t h e  seat  t o  record a c c e l e r a t i o n  i n p u t s  i n  the  

t h r e e  major d i r e c t i o n s .  The tests which a re  of p a r t i c u l a r  

i n t e r e s t  i n  a s s e s s i n g  to l e rance  1evel:j are l i s t e d  i n  

Appendix L. 

These 

Because of the  n a t u r e  of the  tests, the capsule occupant 

experienced high a c c e l e r a t i o n s  i n  the  tran;3verse, s p i n a l  and 

l a t e r a l  d i r e c t i o n s .  When each d i  rcc  t i o n  is considered 

s e p a r a t e l y  the  r e s u l t s  obtained a r e  shown i n  Figs. 2 3 ,  25 and 

26, bu t  t h i s  a n a l y s i s  i s  not considered v a l i d  i n  view of t he  

mul t i -d i rec t iona l  na tu re  of t he  app l i ed  a c c e l e r a t i o n s ,  and 

t h e  p o i n t s  a r e  incl.uded f o r  t h e i r  i n t e r e s t  value only and 

have n o t  been used i n  determining the  to l e rance  l i n e s .  The 

e f f e c t s  of multi-di .rectiona1 i n p u t s  on human to l e rance  are of 

extreme importatice, s i n c e  t h ~ : ; ~ ?  inpiit:< a r e  o f  t e n  encountered 

i n  p r a c t i c e .  A r e sea rch  program is p r e s e n t l y  underway t o  

determine to l e rance  c r i  teri .a f o r  t h i s  t y p e  of i npu t  based on 

the  magnitude and d i r e c t i o n  of the resil l  t a n t  a c c e l e r a t i o n  

experienced by the  c;lp:;ule. The r e s u l t s  of t h i s  s tudy w i l l  

be published a t  t h e  completion of the  program under R e f .  31. 

9.0 Ten ta t ive  Tolerance C r i t e r i a  
~ ~~ 

. .  .. .. 

Because of t he  s p a r s e  evidence a v a i l a b l e ,  i t  is impossible 

t o  g ive  f i rm recommendations f o r  tho val ties of t h e  c o e f f i c i e n t s  

t o  be used wjth t h e  dynamic model.. The equ iva len t  r e c t a n g u l a r  

i n p u t  concept has  been introduced i n  an  at tempt  t o  s t a n d a r d i z e  

t h e  present,at.ion of experimental t o l c rnnce  d a t a  and t o  t ake  
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account of t h e  e f f e c t s  of d i f f e r e n t  r i s e  times encountered 

i n  the  t e s t s .  'his method of analysis is not  i d e a l  and 

can be c r i t i c i z , e d  on v a r i o u s  coun t s ,  bu t  i t  r e p r e s e n t s  an  

improvement on e x i s t j n g  methods. The h p p l i c a t i o n  of t h i s  

a n a l y s i s  has  t r a n s f e r r e d  many of t h e  experimental  p o i n t s  t o  

t h e  longer  d u r a t i o n  region, r e s u l t i n g  i n  l e s s  evidence i n  the  

important impulse and p l a t e a u  regimes. 

The a n a l y s i s  of spi.nal headward a c c e l e r a t i o n s  has  shown 

t h a t  t he  maximum p l a t e a u  input  a c c e l e r a t i o n  can be taken as  

40 G with some deEree of confj.tlence. 

equ iva len t  s p i n a l  frequency is  not. so w e l l  d e f ined  and 

because of t he  shortage o f  re:;vlts i n  the  impulse reg ion ,  

t h e  most r e l i a b l e  evidence can be taken f rom the  c r i t i c a l  

vel o c i t y  change deduced from Sweari.nyen's d r o p  t e s t s  which 

g i v e s  a value f o r  W of 225 r.;ld/sec. 

The s e l e c t i o n  of an  

Most. of the  d a t a  analyzed concerned the  t r ansve r se  

backward d i r e c t i o n ,  although most of thci experiments concerned 

r e l a t i v e l y  long du ra t ions .  The p l n  t e n u  t o l e rance  l i n e  f a l l s  

a t  a val.ue of 45 G For the  i.nput accFlern t ion  and the  most 

s e n s i b l e  p o s i t i o n  f o r  the  impulse to l e rance  l i n e  corresponds t o  

a frequency of 95 rad/:;ec., which i:; :inmewhat h ighe r  than the  

val.ue su rgcs t cd  by the evidence f r w m  acci-den t s u r v i v a l .  The 

adopti.on of the more pessirni s t i  c t o l e rance  l i n e  appears  

j u s t i f i e d  z ince  i t  sati. .;fies the few s l .ed  t e s t  p o i n t s  a v a i l a b l e  

and acc iden t  case:; usually r ep resen t  extreme end po in t s .  
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conducted, i t  is sup;gested t h a t  t h e  al lowable peak i n p u t  

a c c e l e r a t i o n  is taken as 35 G. 

Ten ta t ive  v a l u e s  suggested f o r  use with the  s i n g l e  

degree of freedom, undamped dynamic model a r e ,  t h e r e f o r e ,  

as fol lows:  

Headward D i r e c t i o n  

frequency 225 rad/sec. 

maximum al lowable m a s s  a c c e l e r a t i o n  80 G 

Backward Di rec t ion  

frequency 95 rad/sec. 

maximum al lowable mass a c c e l e r a t i o n  90 G 

Forward D i r e c t i o n  

frequency 95 rad/sec.  

maximum al lowable mass a c c e l e r a t i o n  7 0 G  

The impulse o r  impact r e g i o n s  based on these  c r i t e r i a  

r ep resen t  d u r a t i o n  ti.mes from zero up t o  0.009 sec.  (headward), 

and 0.02 sec .  (backward and forward).  The end of the p l a t eau  

region correnponds t o  d u r a t i o n  t imes of 0.09 sec.  (headward), 

0.06 sec.  (backward), and approximate1.y 0.08 sec.  (forward).  

It should be remembered t h a t  t hese  va lues  are appl- icable  

t o  the undamped model. Damping w i l l  i n t roduce  changes i n  

t h e  to l e rance  l e v e l s  as  explained e a r l i e r ,  but  t hese  are 

considered t o  be small enough t o  be ignored a t  t h i s  s t a g e ,  

i n  view of the accuracy of the a v a i l a b l e  experimental  da t a .  

Also, i f  t he  Ej-band type a n a l . y s i s  is being used, t he  t o l e r a n c e  

areas de f ined  by the  p o i n t s  E’ i n  Figures  23, 25, and 26 are 

app l i cab le .  



10.0 The Need for Further Work 

Research requirements in the field of human tolerance to 
short duration accelerations are considerable and only 

suggestions arising from the particular aspect described in 
this report will be mentioned here. 

suggestions are made: 

The following broad 

1. Experimental work should be planned wjth the complete 
acceleration-time spectrum in mind t o  insure adequate 
coverage of impulse, plateau and hydraulic regimes. 

2. More attention s h o u l d  be paid to experimental detail of 
individual experiments from the point of view of planning 

input acceleration programs that are more amenable to 

simple analysis and to the measurement of relevant 

experimental quantities and cross checking results by 

alternate instrumentation. 

3 .  Where possible, more than one test to be carried out under 
a given set of conditions - giving reproducibility of 
results . 

4. Standard objective, medical examination procedures should 

be devised to estimate degree of tolerance in experimental 

work. 

5. More cooperation between experimentalists, theoreticians 
and persons with applied experience in the field, in the plan- 

ning of experiments. 

6. The theoretical and practical investigation of the influence 
of restraint systems on human dynamic response should be a 

matter of priority and the optimization and standardization 

of restraint systems used in tests should be agreed to. 
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7. 

8. 

9. 

10. 

More experimental data in the impulse region is essential - 
this could be achieved by simple, controlled drop tests 
which are reasonably inexpensive and give reliable results. 

Human tolerance levels applicable to multi-directional 
acceleration inputs should be investigated using theoretical 
and experimental techniques. 

Analytical studies should continue with the aim of 
producing more comprehensive models and more reliable 
values for the appropriate coefficients. 

Experimental methods for the direct measurement of 
physical and mechanical characteristics of the body under 
dynamic conditions should be extended, and the correlatiun 
of human and animal response should be investigated to 
ensure the correct interpretation of experimental results 
using animal cubjects. 

It is only fair to point out that some of these suggestions 
are already being complied with in the acceleration stress 
field, and what is hoped for here is,a more universal acceptance 
of an agreed policy in attacking the many problems that still 
exist. 

11.0 Conclusions 

The research program reported here has developed a single 
degree of freedom dynamic model, consisting of a spring-mass 
analog of the human body, that can be used to predict human 

tolerance to abrupt accelerations. Variations of the basic 
model can be used to predict the quantitative effects of 
restraint systems and seat cushions, but more work is required 

in this field. Two and three degree of freedom models can be 
used for a better representation of the human body, but the 
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f u l l  s i g n i f i c a n c e  of t h i s  approach w i l l  depend on f u r t h e r  

r e sea rch .  There is still  a l a c k  of r e l i a b l e  experimental  

d a t a ,  bu t  c o e f f i c i e n t s  t h a t  can be used with the  undamped 

s i n g l e  degree of freedom model have been suggested f o r  t h e  

headward, forward, and backward a c c e l e r a t i o n  d i r e c t i o n s .  

The a n a l y t i c a l  s o l u t i o n s  developed for simple inpu t  

forms can be used i n  l i m i t e d  a p p l i c a t i o n s  and f o r  q u a n t i t a t i v e  

s t u d i e s ,  but  d i g i t a l  o r  analog computers a r e  r equ i r ed  f o r  t he  

a n a l y s i s  of complex a c c e l e r a t i o n  inpu t s .  

The a n a l y t i c a l  approach t o  the  problem of a c c e l e r a t i o n  

s t r e s s  and cons ide ra t ion  of t h e  dynamic response of t he  human 

body when sub jec t ed  t o  s h o r t  d u r a t i o n  a c c e l e r a t i o n s  can make 

s i g n i f i c a n t  c o n t r i b u t i o n s  towards a s o l u t i o n  of t he  many 

problems involved. It is emphasized that, cooperat ion amongst 

t he  persons engaged i n  t h e  s tudy of v a r i o u s  a s p e c t  of acce le ra -  

t i o n  phenomena w i l l  provide the  s u r e s t  means of ob ta in ing  a 

complete understandi-ng of t he  o v e r a l l  problem. 
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I 

Information 
Supplied 

Table 1. Sources of Experimental Data 

Point  
Subject Source 

Headward Low input  values 
( 20 G). Neck 
i n j u r i e s .  

Near 
End Point 

StaPP , 
Refs. 18 19. As published I Human 

I Chimpanzee 

I 

1 

1 
2 

i 

Direct ion of 
Acceleration 

~~ 

Comments 

Forward 
Backward 
Headward 

Backward 
Headward 
Backward 
For ward 
Headward 
Backward 

Data on some runs 
not ava i lab le .  ! I k More end poin ts  

1 reported,  but d a t a  not 
1 used s ince  f u l l  
' information not given 1 i n  published work. 

I , Forward 

i 
N . A .  ?! .L. 
Fni ladelphia  t e s t s  inves t -  , 

Some 4,500 Human 1 2 

iga ted  

I 
I 

I i 
I 

i 

I I 
W.A.D.D. 1 Couch drop Human 
( Aeromed. Lab. ) t e s t s  and and 

shake t e s t  6 Bear I 
I 

t 

M a x i m u m  36.5 G 
Information on low 
frequency modes. 

1 
F.A.A. ' Drop t e s t s  { Human 1 

I 

I 
Oklahoma 
Ci ty  

Headward 1 Instrumentation 
suspect ,  v e l o c i t y  
changes calculated.  
End p o i n t s  represent  
s e r i e s  of experiments. 

I 

i 



4 w 
Headward 

Table 1. Sources of Experimental hta (oontd.1 

h l y  Ge" e, 
no injuriea with 
good rastrht. 

i I 

ejection seat 
t tests 

Source Information 
Supplied 

Multi- 
d i n e t i o d  

Subject 

Hulti-directional 
accelerations. 

Geerte, 
Ref. 6 

R.A.E. 
England 

Stanley Aviation H" 

I I 
I I 

I 

and 

Direction of 
Acceleration 

End 
Point 1 End Point 

Comments 

I 

Bo information 
supplied 

I I I 
I I 



Table 2. NOTATION USED I N  EXPERIMENTAL ANALYSIS * 

Symbol 

--- 

0 

0 

n 

0 

._.~__. 

Sub jec t  

-. 

Bear 

Chimpanzee 

Human 

Hog 

. ~ .  ~- 

I n i t i a l  
Letters 

'H 

S 

SA 

G 

D 

ST 

- 

Re f e r  e nce 

-- 
Holloman 
A.F.B. 

Ref. 18 

Ref. 19 

Ref. 6 

Ref. 29 

Stanley 
Aviat ion 

Number 

Refers 
t o  

T e s t  
Number 

~- 

F i n a l  
L e t t e r  

E 

f 
E 

S 

Type of 
Analysis 

O r i g i n a l  
Eiband 
Analysis 

~. 

Eiband Type 
Analysis by 
Stanley 
Aviat ion 

Equivalent  
Rectangular 
Input 
Analysis 

Full Shading e.g. A - end point  

Half Shading e.g. A - near  end po in t  

No Shading e.g. A - no i n j u r y  

* Except Figures 2 and 3, where Eiband 's  o r i g i n a l  nomenclature has  
been used. 
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k (spring stiffness) k I 
Yc (input acceleration) 

(a) single degree of 
freedom model 

2K 
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( b )  single degree of 
freedom model with 
damping 
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Fig. 5. Dynamic Models of a Human Subjected to Acceleration 
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-- APPENDIX A 

NOTE ON MATHEMATICAL -. __ -. - - - METHODS - AND ANALYTICAL TECHNIQUES 

SYMBOLS 

h 

L 

L-' 

P 

t 

X 

X I  .. 
YC 

S , k , Z  

w 

a r b i t r a r y  f u n c t i o n  o f  t i m e  

denotes  " the Laplace t ransform of" 

denotes  "the i n v e r s e  Laplace t ransform of" 

t h e  independent v a r i a b l e  i n  t h e  t ransformed 
e quat  i o n  

t i m e  

f u n c t i o n  of p such  t h a t  L h ( t )  = ( p )  

value of 6 at  t = 0 

value of 6 at  t = o 
i n p u t  a c c e l e r a t i o n  

d e f l e c t i o n ,  v e l o c i t y  ( r a t e  of  change o f  
d e f l e c t i o n ) ,  a c c e l e r a t i o n  ( r a t e  of change 
of v e l o c i t y )  of s p r i n g  

frequency of o s c i l l a t i o n  of t h e  motion o f  
thrt s p r i n g  and mass 

A. 1 



The object  of the mathematical a n a l y s i s  of  the dynamic response 

of a model represented by a spring-mass system when an acce lera t ion  

input  is appl ied  t o  the system is t o  determine the motion with 

respect t o  time of a p a r t i c u l a r  mass within the system, which is 

influenced by the  input acce lera t ion  and the  subsequent v ibra t ion  

of the  spr ings  themselves. 

The f i r s t  s t e p  is t o  evaluate the the  forces  developed i n  the 

aystem i n  terms of the  c h a r a c t e r i s t i c s  of the  system (spI-ing s t i f f n e s s ,  

damping e tc . )  and t o  determine the a lgebra ic  sum of the  forces  a c t i n g  

on t h a t  part o f  the  system which is of in te res t .  If the  part of the 

system under considerat ion is at r e s t ,  a condition of equilibrium 

e x i s t s  where the sum of the forces is zero* If some r e s u l t a n t  

force a c t s  on any mass however, motion r e s u l t s  t h a t  can be described 

by Newton's second l a w  of motion which gives 

force = mass x acce lera t ion  

The forces  a c t i n g  a r e  usual ly  determined i n  terms of the  spr ing 

def lec t ion  o r  the  spr ing  ve loc i ty  ( r a t e  of change of def lec t ion) ,  s o  

an  equation involving one o r  both of these q u a n t i t i e s  resu l t s .  

the  def lec t ion  is 6 , the  spr ing ve loc i ty  is 

wr i t ten  6 and the  spr ing acce lera t ion  ( r a t e  of change of spr ing  

ve loc i ty)  is 'xt1(i) o r  . The input acce lera t ion ,  usual ly  

denoted gc is assumed known, and t h i s  is r e l a t e d  t o  t h e  spr ing 

acce lera t ion  and the r e s u l t a n t  mass acce lera t ion ,  so that the  input 

can be introduced i n t o  the equation. Thus, f o r  the  s i n g l e  spring-mass 

system with no damping present ,  discussed i n  Appendix B, the  equation 

governing the motion of the mass t u r n s  out t o  be 

I f  

4 (s) which is 
dt: 

.. 

.. 

where is the frequency of the system. 
This  equation is refer red  t o  as the  equation of motion of the system 

and i t  contains the ingredients  necessary f o r  evaluating the way t h a t  

the mass moves with t i m e .  Written out f u l l y ,  the above equation is 

A. 2 



The equation of motion has t o  be solved t o  give the spr ing 

def lec t ion  a t  any time, which can i n  t u r n  be re la ted  t o  the resu l tan t  

mass accelerat ion.  The equation of motion can be solved t o  give an 
a n a l y t i c a l  or closed form so lu t ion  only for c e r t a i n  simple accelera- 

t i o n  input forms, e.g. s t e p  function, ramp,,impulsive inputs ,  but 

these cases are of considerable i n t e r e s t  . When more complicated 

inputs  have t o  be analyzed, the equation of motion must be solved 
e i t h e r  numerically i n  a step-by-step fashion, usual ly  with the a i d  

of a d i g i t a l  computer, or with the a i d  of an analog computer. 

The method of a n a l y t i c a l  so lu t ion  adopted i n  t h i s  report  uses 

the Laplace transform or operat ional  calculus  technique, which ie 
readi ly  appl icable  t o  l i n e a r  d i f f e r e n t i a l  equations with constant 

coef f ic ien ts .  This method has the advantage t h a t  i t  is d i r e c t  and 

does not need the evaluation of complex a r b i t r a r y  constants. This 

convenient method of solving d i f f e r e n t i a l  equations is easy t o  use as 

i t  is subject  t o  s t r i c t  rules .  Mathematically a function, s a y R ( t )  

i8 transformed i n t o  another  function X ( p )  by the operation 

x ( p )  = b p - h ( C ) d t  
0 

This is usually wr i t ten  

where L s tands for "the Laplace transform of." 

A l l  functions appearing i n  the d i f f e r e n t i a l  equation a r e  transformed 

by the procedure spec i f ied  above. The value of XCpJ f o r  a v a r i e t y  

of functions M e )  
l abor  is a c t u a l l y  

e x i s t s  denoted by 

The procedure f o r  

a r e  t abu la t ed  i n  standard t e x t s  so no in tegra t ion  

involved. I n  a l l  cases an inverse transform 

solving a d i f f e r e n t i a l  equation is t o  arrange the  

terms i n  such a way that known transforms e x i s t ,  and a f t e r  consulting 

the transforms and appl icable  theorems, t o  solve f o r  the new variable.  

The inverse Laplace transform is then consulted, which gives the  



so lu t ion  i n  terms of the o r ig ina l  var iable  d i r ec t ly ,  

eolut ion of d i f f e r e n t i a l  equations is reduced t o  a matter of 

consulting pa r t i cu la r  transformations i n  a t ab l e  of transforms. 

Thus the 

As an example, take the equation c i t e d  above and l e t  

Then, consulting the t ab le s  of transforms 

where xo and XI are the  values of 8 and 6 at t = 0, also 

The traneformed 

at 

80 that 

equation of motion, f o r  the simple case where 
t = 0, i 6  

0 0  b”r + w = x  = 

The inverse Laplace transform of the r igh t  hand s ide  is 8. (1- 
d d a  

hence .* 

It should be noted that in some t e x t s  the Laplace transform I s  

defined by 

O J  

which r e s u l t s  i n  a di f fe ren t  s e t  of transfonns but ,  of course, gives 

the  earn anewer. 
report. Further information on Laplace transforms can be obtaiaed 

by consulting the references given a t  the end of t h i a  appendix. 

The f i r s t  def in i t ion  is used throughout t h i s  

A. 4 



Having deduced the epring d e f l e c t i o n , 6  , from the  equation of 

motion, i t  is usual ly  required t o  inves t iga te  the conditione under 

which the def lec t ion  or r e l a t e d  resu l tan t  mass acce lera t ion  a t t a i n s  

a maximum value. This  is done, where possible ,  by the  standard 

procedure of examining d6/b-= 0 which gives the time a t  which 

turning points  e x i s t ,  and the conditions for d2G/dtz t o  be 
negative ind ica tes  when is a maximum. I n  t h i s  way the peak 

def lec t ion  or peak mass acce lera t ion  can be determined and used as a 
c r i t e r i o n  f o r  determining human tolerance t o  accelerat ion,  as 
described i n  the main t e x t .  
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GENEEAL THEORY OF A LINEAR, UNDAMPED, 
S I N G L E  DEGREE - OF FRF;EI;OM MODEL 

SYMBOLS 

spring force 

spr ing s t i f f n e s s  

unloaded spring length 

Laplace transform 

mass 

time 

duration time of pa r t i cu la r  input 
accelerat ion 

0 .  

YpI Y 9 Yp coordinate, veloci ty ,  accelerat ion of 
P mass m r e l a t ive  t o  fixed datum 

P . *a 

Y,, Y,, Y, coordinate, veloci ty ,  accelerat ion of 
spring base r e l a t ive  t o  fixed datum 

d B P X  constants appearing i n  input functions 

def lect ion,  veloci ty  ( r a t e  of change of 
def lect ion) ,  accelerat ion ( r a t e  of change 
of veloci ty)  of spring 

s j . 2  

6s i n i t i a l  ( s t a t i c )  spr ing def lect ion 

CL) spring frequency 

B . l  



General Theory 0f-a- Lineag,. UndamEd, Single  D_eRree of Freedom Model 

In t h i s  Appendix, the dynamic model i n  its simplest form 
(Figure B.1) w i l l  be t rea ted ;  

spring-mass system with a l i n e a r  response and no damping ef fec ts .  

The mathematics governing t h i s  basic model is fundamental t o  an 
understanding of the various modified dynamic models and should serve 
as a good introduction t o  the subject.  

t h a t  is, a s ingle  degree of freedom 

(mass o r  output 
P accelerat ion)  spring i n  motion 

and compression 

w 

F displace- ( force 1 (unloaded 

from 

6 (def lect ion)  .. 
Y, ( h P U t  

accelerat ion)  

(b) 
Figure B.1 

A spring t h a t  has a is one that has equal 

increments of def lec t ion  f o r  equal increments of force,  and a plo t  of 

force against def lec t ion  produces a st raight- l ine.  

is re la ted  t o  the def lect ion ( s  
The force (F) 

by the  expression 

B.2 

B.1 



This force,  developed i n  a spring,  produces an acce lera t ion  of 
the  mass, r e l a t i v e  t o  the  datum, and can be expressed by Newton's 

second l a w  of motion (Force = mass x acce lera t ion) ,  as follows: .. = k 6  = q + t p  B o 2  
When a given acce lera t ion  (or force)  is applied t o  the  base of 

the spring, a force is developed i n  the spring i n  accordance with 

Equation B . 1 ,  which produces the mass accezeration given in B.2. 
It is deaired to  express B.2 i n  terms of the input ,  which is the 

known quant i ty  i n . t h e  problem, and the argument proceed6 as follows: 

The deflect ion i n  the  spr ing i s  equal t o  the  unloaded length ( k  ), 
minus the loaded length (y  -y 1. 
shown i n  Figure B.1 ( c ) ,  t h i s  leads t o  

Adopting the coordinate system 
P C  

6 = 1 -@&--&) B.5 
The sgr ing ve loc i ty  (which can be in te rpre ted  as the rate of 

change of def lec t ion ,  i.e. the  ve loc i ty  of the mass r e l a t i v e  t o  the  

p i n t  of appl ica t ion)  and a-cceleration (which is the rate of change 

of the  spr ing ve loc i ty)  are obtained by d i f f e ren t i a t ing  B.3 with 

respect t o  time, once and twice, respectively.  Thus 

6 = k - &  
g = gL- gp and .. 

Subs t i tu t ing  t h i s  value f o r  i n  B.2, gives 
P 

o r  

n a t u r a l  frequency of the spring-mass system is re la ted  t o  the 

mpr- s t i f a n e s s  by the expression 

mo the above equation can be wri t ten  

This is the equation of motionaf the system, and r e l a t e s  the 

input accelerat ion t o  the spr ing frequency, the def lect ion and the 
accelerat ion produced i n  the spring. Equation B.5 is a d i f f e r e n t i a l  

B.4  

B.5 

B . 3  



equation of standard form t h a t  can be solved f o r  simple inputs  t o  

give a so lu t ion  representing the def lect ion (6 ) at any time. 

def lect ion can be used t o  obtain the spr ing acce lera t ion  ( 'B ) t h a t  

can then be r e l a t ed  t o  the mass accelerat ion (y 1, by B.4 .  
.ass acce lera t ion  w i l l  be used t o  denote the  accelerat ion of the  mass 
r e l a t ive  t o  the  fixed datum line and is the resu l tan t  of the appl ied 

input accelerat ion and the spring acce lera t ion  due t o  the  spr ing 

def lec t ing  . 

The 

The 
P 

Solution f o r  a . S t e p  Input 

For the  init ial  ana lys i s ,  a s t e p  input W i l l  be assumed, i.e., 
one which rises instantaneously t o  a given value and remains a t  that 

value f o r  some time, which is considerably g rea t e r  than the period 

of , the  system. The input function w i l l  be denoted as follows: 
.I 

=o( 
3c  

and B.5, when wr i t ten  out fu l ly ,  become6 

The Laplace transform method of operational calculus  w i l l  be 

used t o  solve t h i s  equation, although any standard technique can be 

employed. The Laplace transform method reduces the  so lu t ion  of a 

d i f f e r e n t i a l  equation t o  a matter of looking up a pa r t i cu la r  

transformation i n  a tab le  of transforms. Reference t o  standard 

texts (e.g.  Refs. B.1, B.2, B.3, B.4) w i l l  c l a r i f y  the  procedure. 

If L denotes "the Laplace transform of," then 

L & ( k )  = X . ( p  
I n  terms of Y , B.6 becomes 

p+ W A X  = 

for  the initial condition6 & = 0 ,  and 6 = 0 a t  t = 0. 

Hence, 
a 

'-J(+ = - 
p' + L o L  

B.4 

B.6 



The inverse Laplacian transform givea 

= 5 ( I - M w t )  
w’ B* 7 

This is the so lu t ion  of the equation of motion, and givea the value 
of the  dsfbct ion a t  any time t f o r  a s t e p  acceleration input of v a l u e q  
Mffe ren t i a t ing  with respect t o  time gives the 8~rYng r e l o c i t r  (rate 
of change of spring def lec t ion)  

and a second d i f f e ren t i a t ion  givea the spring accelerat ion 
. e  6 = occajWt  

B.8 

B.9 

Thus, from B.4 ,  the expression for the mas6 accelerat ion becomes 

= a ( I - C a 3 W t ) *  B o 1 0  i& 
The output given by B.10 is sinusoidal  in nature and has the form 
shown I n  Figure B.2 

a? ti-, t 1 

4 11 33 a- Figure B.2 I w  w 
0 

If there ie some i n i t i a l  def lect ion i n  the spring given by ss , the 

Laplacian equation take6 t h e  form 

- p= ‘c, -t- t>’I l- L d  x. = 6 



where Xo= 4 t he  value o f  6 at  t = 0. Then, 

d + p=x, 
b’ + w= 

x =  

The i n v e r s e  Laplacian t ransform of t h i s  express ion  gives 

6 = s (I-Mdt) + t s , - u k  

* a( - U t  -w=& c4-s*t 

W’L 

and .. 
s 

80 that, in t h i e  case ,  t he  mass a c c e l e r a t i o n  can be represented  by 

= o( ( I - &at) + was, w w t % 8.11 

S o h  t i o n  fo r-a-Line g r  _Rlunp_Inp t 
~~ 

A l i n e a r  ramp inpu t  i e  one that has a cons tan t  elope, i.8.) its 
value  r i s e s .  l i n e a r l y  wi th  time and mag be r ep resen ted  by ic -pt 
w h e r e p  is the  slope.  

.* 
gc 

(input 
accc  l e  ration 1 

c 
t (hime) 

Figure B.3 

The equat ion of motion can be w r i t t e n  

The Laplace t ransform of this equat ion  f o r  6 t 0, = 0 at t = 0 gives 

/ p y + w ’ r  = /3, 
P 

B.6 



f i  and 
x =  - 

b< pw.’ 
The inverse Laplacian transform gives. 

which represents the deflection at any time t < t , ,  and the accelera- 

t i on  obtained by double d i f fe ren t ia t ion  is 

giving the maas acceleration by the expresaion 

The output corresponding t o  t h i s  expression is a l s o  plotted i n  
Flgure B.2. 

If the inplt can be represented by a ramp function Uti1 time 
t,, and then assumes some other  form, the mass acceleration may be 
represented by B.13 u n t i l  t = t , ,  thereaf te r  the equation of motion 
mst be 60lVed us- the conditions exis t ing a t  t = t ,  as the new 
s t a r t i n g  conditions. 

Solution f o r  a Parabolic Input 

In t h i s  case, the input has the shape shown i n  Figure B.4, .. 
and can be represented by the equation 2c t rt’ 

The equation of motion is now 

B.7 

B.14 

. . .. . . . . .- 



The Laplace t ransform for = 0, 6 = 0 at t = 0 is 

so t h a t  

The inve r se  Laplacian t ransform r e s u l t s  i n  

and the  a c c e l e r a t i o n  is given by 

and the  mass a c c e l e r a t i o n  from B.4, can be w r i t t e n  

The mass a c c e l e r a t i o n  given by t h i s  expression is i l l u s t r a t e d  i n  
Figure B.2. 

Peak Accelera t ions  

I n  apFlying to l e rance  c r i t e r i a  t o  the  model, t he  quan t i ty  of  

main i n t e r e s t  is  the  value of  the  maximum a c c e l e r a t i o n  ( o r  output )  

achieved by the  mass. When a maximum occurs  i n  the  output due t o  the  

mass a c c e l e r a t i o n  overshoot ing,  i t  can be found a n a l y t i c a l l y .  The 

usua l  procedure is t o  d i f f e r e n t i a t e  with respec t  t o  time t h e  equat ion  

represent ing  the  mass a c c e l e r a t i o n  a t  any t ime, and equat ing t o  zero. 

For the  s t e p  input  from B. lO ,  

The s o l u t i o n  of t h i s  equat ion g ives  any tu rn ing  point  which might 

represent  a maximum, minimum, o r  a point  of i n f l e c t i o n .  In  the  

above equat ion,  d W  is f i n i t e ,  and s i n c u t  must be zero ,  which occurs  

B .15 

B.8 

.. . 



.d 

when&& = 0, , 2% etc. A second d i f f e r e n t i a t i o n  gives  t h e  

cond i t ion  fo r  maximum o r  minimum. 

. I ' B P  = ~ L d % - & W - t  

d. t" 
- 

When W b  = 11 , 37i 
a maximum. 

func t ion  inpu t  , when 

e tc . ,  t h e  second . d i f f e r e n t i a l  is nega t ive  , i n d i c a t i n g  

Thus, t h e  mass a c c e l e r a t i o n  is a maximum f o r  a steE 

II 35- sy e& * =  / w ,  L 3 )  w 

and has  t h e  va lue  
.. 

( I - c4Kl W t )  B. 16 

Thus, i f  t h e r e  is no damping p resen t ,  t h e  peak inass a c c e l e r a t i o n  

can be twice t h e  i n p u t  a c c e l e r a t i o n .  

overshoot . 
This  is the  case of  lo(% 

The l i n e a r  ramp and pa rabo l i c  i n p u t s  show no maxima o r  minima, only 

p o i n t s  of i n f l e c t i o n .  These f a c t s  can be seen  by consu l t ing  

Figure B.2. 

Square Wave Input  

The square wave inpu t  case  i s  of p a r t i c u l a r  i n t e r e s t  , s i n c e ,  

i n  p r a c t i c e ,  t h e  inpu t  is a p p l i e d  f o r  a s h o r t  f i n i t e  time ( t ,  ) only.  

The mass cont inues  t o  move a f t e r  t h e  removal of  t h e  a p p l i e d  

a c c e l e r a t i o n ,  so  t h a t  t h e  maximum a c c e l e r a t i o n  experienced by the  mass 

is u s u a l l y  obta ined  a t  some time g r e a t e r  than  t , .  
through B.10 ho ld  up t o  time t ,  , bu t  t h e r e a f t e r ,  s i n c e  t h e  inpu t  is 

removed, t h e  equat ion  of motion reduces t o  

Equat ions B.6 

I n  t h i s  ca se ,  t h e  i n i t i a l  c o n d i t i o n s  t o  be a p p l i e d  are those  p e r t a i n i n g  

t o  t = tl . The Laplace t ransform o f  B.17 is 

- p", - p?xo + P'Y 4- w x 3 c  '= 0 

B.9 

B.17 



The invarse Iaplaca  transform of this  expression givrr 

Substituting tbe value. for Xt UrdX, , lea& to 

urd mince sin‘& t W t ,  = i 

& = _d(2-a-wr;) ‘4 -(at:+@) . 

g p =  ti)=.& 
w’ 

From B.2, 

so the ma88 acceleration for t i m e  gretattr thsn t ,  ia given by 

.# ‘1% 
= n ( ( 2 - 2 M # t , )  ach(wt.+b) 4 

where time is now measured from t - t ,  

B.18 is exaninedfar maxima by differentiating w i t h  r r a p c t  t o  time 

and equating to zero, %.e.,  

B. 18 

B.10  



"9 
V I  a%, - 3 - o l k ) = ~ 2 - 2 ~ W ~ * ~  &(&t-i-q4 

- d ta 

this elpression i a  negative when (at.+# = ''/= ''% 80 

that amxiara occur a t  these valuee. 

given by 
The - peak-mass acceleration is 

gpau) - - (2 -a Cea Wt,)l'x 

Thus, for a given amplitude, the max~mum output attained depnda on 
the pulse duration and frequency, as shown i n  Figure B.5, 

to 2.0 I input 

rectangular input 

max. occurs 
before t , 

Figure B.5 

B.ll 
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APPENDIX C 

F 

m 

Q 
P 

t 

t l  

t a  

Yp' Yp 
.. 

Yc' ic 

.. 

spring fore. 

acceleration due t o  gravity 

spring e t i f fnese  

unloaded epring length 

-86 

d6 
dt 

t -  

time 

time a t  which o 0 

time at  which k P 0 

coordinate, acceleration of m 
re la t ive  t o  fixed datum P 

coordinate, acceleration of spring base 
re la t ive  t o  fixed datum 

i n i t i a l  acceleration a t  t = 0 

a tep  function input acceleration 

deflection, velocity ( r a t e  of change of 
deflection),  acceleration ( r a t e  of change 
of velocity) of epring 

i n i t i a l  ( s t a t i c )  spring deflection 

spring frequency l n  = \ 

c.1 



m 
(mass 1 

P 

wl 
(freq- 
uency) 

The baeic model $6 be studied is shown i n  Figure C . l ( a ) .  
epring i n  
motion and 
compreseion 

j ;  (mass o r  

accelera- 
t i on )  

Poutput 

(input 
ac c elrra- 

I t i o d  
Cacceleration) 

j ;  (input 

(b) 

ment from 
datum 

(C 1 
Fi-re CB& 

The approach used is similar t o  that given h a  Appendix B, except that 

the force-deflection ~ h a r a c t e r i s t i c e  of the clpring are assumed t o  be 

non=linear. 

compression o r  extension must be represented by a re lat ionship of 
the  form. 

Thus, the force developed i n  the spring during 

F = k,s" 
n 

where 6 
of epring s t i f fnes s .  

The influence on the 3' versus 8 curve of various values of n is shown 

denotes some power of 6 and k, is the corresponding value 

in Figure C.2. 

F 
(force 1 

Figure C.2. 

c.2 

(2.1 



Although t h i s  forumula does not glve a completely general 

representation of the system shown i n  Figure C.1, it enables a 
reasonable approximation t o  be made by select ing an appropriate 
value of the exponent n. T h i s  assumption allows us  t o  prove a 
number of valuable theorems without complicating the mathematics 
too much. 

Generally, from Newton's second law, the force developed in 
the  spring causes an accelerat ion i n  the maas which is given by 

F = Mi& = k,S" 

Hence, 

k, 
and since Gp can be wri t ten i n  terms of the frequency 
( W ) ,  viz. ut? = kn = 5, ( say) ,  the def lect ion is given 

M P  

c.2 

The equdtion of motion of the system can now be wri t ten down 
f o r  a given input since the resu l tan t  force on the mass is that 

developed i n  the spring, l e s s  the normal gravity force ( i t s  weight 
f o r  the ve r t i ca l  direct ion) .  This force causes a mass acceleration 
$jik, 80 that 

The deflection 6 is  the distance through which the spring deflect6 

when loaded, and is the  unloaded spfing length minus the loaded 
length. Using the coordinate system shown i n  Figure C.l(c) 

Taking the second derivative with respect t o  time, the spring 
acceleration due t o  the def lect ing of the spring ia given by 

c.3 

c.4 

c.3 



which is the difference between the applied acceleration and the 

ac tua l  resul tant  acceleration experienced by the mass re la t ive  t o  
the or igin of the system (datum), and .. 

Subst i tut ing C.5 i n  (2.4, the equation of motion. i n  -terms-pf the 

input acceleration $jC is obtained 
h 

* *  -k=)  + rrlpg = khs %4L 
or 

where ic = ;fct) is a function of time. 

= c A  & Effect of- Conatant Acceleration 

I f  the input acceleration r i s e s  instantaneously t o  a value o( 

and then remains constant (i.8.) a s t e p  function), an expression 

f o r  the maximum value of the resul tant  mass acceleration (2,,) can 

be derived. For convenience, the following subs t i tu t ion  is made 

.. 

80 that the equation of motion (C.6) becomes 

and transposing terms 
obtained 

f . ' O  

+ 5,s" = d + %  

and integrating, the following expression is 

5 W*X 

? = O  s s  

The l i m i t s  of the integrat ion a re  as indicated,  because at time 
t = 0 the velocity ( 6 = q) is zero when the deflection is Ss (the 

s t a t i c  deflection, due t o  some steady s t a t e  force,  usually the weight 

of the mass), and when the deflection is a maximum ( s- ), the 

c.5 

c.6 

c.7 

velocity is again zero. 

c.4 



The left-hand side integrates to $z/$. , which is the kinetic 
enerRx per unit mass, and for the limits given is zero, indicating 

that all the kinetic energy of the system appears as potential 
energy stored in the spring at maximum deflection. 

a statement of the conservation of energy (kinetic energy plus 

potential energy = 0). 

all the kinetic energy is converted 50 potential energy. 
physical facts, described mathematically above, are illustrated 

graphically in Figure C.3. 

This is simply 

At maximum deflection, is zero so that 
These 

Figure (2.3 

The change in the sign of the d ' ~  curve at t, is due to the fact 

that the acceleration reverses its direction at that time. The 

two equal shaded areas show that the kinetic energy. gained by the 

mass is gradually destroyed and stored as potential energy in the 

system . 
Integrating the right-hand side of C.7 and equating to zero, 

gives 

-. 
The initial acceleration ys from C.3, can be represented by 

C.8 

c.5 



so t h a t  C.8 becomes 

.. 
I f  the i n i t i a l  def lec t ion  w a s  zero,  ss = 0 and Ys = 0 and the weight 

is ignored, so the  above equa.tion reduces t o  

h 

Remembering t h a t  chgma = $/,wax) , from C.2  the  following simple 

expression for the maximum resulttaaJ mass acceleration is obtained. 
.. 
ypcn7ey) = ( I ? + \ )  o( .. 

which, for a l i n e a r  spr ing  ( n = i 1, gives 36"") = 2d i n  agreement 

with ~.16. 

c.10 

General Solut ion for-n = 1 

If i t  is assumed t h a t  n = 1, equation C.9 can be wri t ten 

rh2&:- - 2( '3(+8)S ma* = $s2 - 2 is (d+3)  
z 

Adding (d + 8 )  t o  each s i d e  and f a c t o r i s i n g  gives  

.. .. 
Sdhax) = Z ( d + % Y - &  

c.11 
For zero s t a t i c  def lec t ion ,  C . l l  agrees with C.10 for the  case n = 1. 

Equation C . l l  shows t h a t  i f  $js is negat ive,  as might occur a 
negative "G" f i e l d ,  we have the worst physiological  e f f e c t s .  

c.6 
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APPENDIX D 

THE SINGLE D W m  OF IFBEDOW SYSTM 
SU&tEC!FED TO AN IMmKSIVE INm 

O h  

w 
V 

Av 

spring forco 

apring st i f fnose 

unlorded spring length 

h Q h C @  t W O f O x l l P  

ID... O f  8f8t .m 

t* 

duration ti# of prtimlar 
.ocolo Mt ioa 

or i t ioa l  dumtion time for 
input. 

LI. 

~oordizmto, relooity,  aacelerrtiua of 
IPU~ m mlativcp to  a fixed datum P 
coordlnato, voloaity , accelorrtioa o f  
spring baeo, n l a t i v o  to fimd datum 

deflootion, tolooity (rate of  change o f  
deflection), aooeleration  to of chaqq 
of velooity) of mpring 

reforred t o  ,a@ the t t f r a q ~ o a ~ y  5qucrmd'' o f  
tho system 

reforrod t o  as the ttfrequenoytl o f  tho systom 

i'raquonoy of eystem d b - 1 )  

velooi t y 

tho volocity c w ,  due to an inprlw 



In t h i s  Appendix it is intended t o  develop ftatther the analy8i8 

of the  response of the eimple s ingle  degree of freedom system. 
Short-time duration acceleration8 will be considered, which, in the  
l i m i t ,  reduce t o  impulsively applied accelerations.  

8hOm diagrammatically i n  Figure D.1 (a) w i l l  be etudied 

The model 

(a) (b) 

spring in 
motion and 

frok datum 
( C )  

Figure D,1 

The equations of-_motio_n of the non-linear eystem have been 

established i n  Appendix C. 

loading, from C.6, is 

The equation of motion with no i n i t i a l  

and with an i n i t i a l  load M p  is 
I. 

Defining g z  P 9, + &  , the equation can be condensed t o  

the fom Of D e 1  

Rearranging terms and dividing throughout by m 
of motion in a mom ueable form 

yields  the equation P 

D.2 

D.3 

D.5 
a when c, = hn I W,, and W, is the "frequency" of the system. 

mr 

D.2 



Before proceeding, it is worthwhile discussing the spr ing force 
given by C.2 

D.6 

If n is even, the force F does not change d i rec t ion  with change of 
s i g n  of 6 ( t h a t  is, i n  changing from compression t o  extension). 
our  conclusians are l i m i t e d  t o  a compressed spr ing  only, however, even 
values o f  n can be allowed. 
no d i f f i c u l t y  a r i s e s ,  s ince the force F is always d i rec ted  towards the 
point of e qu i l i b  rim. 

If 

I f  n is odd, F changes s i g n  with 8 and 

I n  general ,  i t  is not possible  t o  solve e x p l i c i t l y  the  
d i f f e r e n t i a l  equation given i n  D.5, but the energy equation can be derived 

from which severa l  usefu l  r e s u l t s  may be obtained. From D.5 
I .  *. s + T,S" = kk 

6s + ChShi z &i 
Now multiplying through by b , the  above equation becomes . .. 
which i n t e g r a t e s  wi th  respect t o  time t o  give the energy equation 

.. 
f o r  a constant 2e . 
the  i n t e g r a t i o n  was not c a r r i e d  out between d e f i n i t e  l i m i t s )  which 
may be evaluated from the i n i t i a l  conditions. 

K is an a r b i t r a r y  constant of i n t e g r a t i o n  ( s ince  

Attention w i l l  now be confined t o  a motion s t a r t e d  from rest by 
a constant acce lera t ion  5c , appl ied from time t = 0 t o  time t = t ,  , 
and so lu t ions  a r e  required of the  equation of motion or energy 
equation f o r  times less ,  and g r e a t e r  than t ,  . 
If 0 4 t & t l  the  energy equation i e  

D. 7 

and the  i n i t i a l  conditions,  expressed in mathematical form, are that 

at  t = 0, 6 = 6 = 0. On s u b s t i t u t i n g  these conditions i n  equation 
D0.89 i t  follows that K = 00 

D.3 



When t > t l ,  the above conditions hold up t o  t = t , ,  when the 

constant accelerat ion is removed; thereaf te r ,  the motion . is 
considered using the i n i t i a l  conditions, 6 = 6, and s = SI , then 

- 

.. .. .. 
Now f o r  t 3 t ,  + 

the energy equation is 
!& = 0, i.e. , 2~ = ss 80 the general form of 

Now a t  t = t ,  , s = SI and = 2, so that from D.9, K is given by 

From D.8 and D.10  

Hence , 

so that from D.9, the required form of the energy equation f o r  t > tl 

is 

* *  s, k = 33c 

o r  

h4 \  
' X  

Since 

';le Bnd $s , the R.H.S. of D . l l  is a maximum when s = 0; i.e., 8 
has its maximum value when s = 0, and 

is always posi t ive,  and 6, has some fixed '2 value f o r  a given ., .. 
' 2  

h+l 

Impulsively S tar ted  Motion (without i n i t i a l  loading) 

. a  

Since 2s = 0, the equation yielding g r w ~  , i n  t h i s  'Case is 

D.9 

D. 10 

D.11 

D.12 

D.4 

~ . 1 3  



The basic motion equations s t a t e  that (velocity)% = % (accelerat ion 

X distance),  hence the veloci ty  of the base of the spring is given 

Combining D.14 and D.1) gives 
, z ) A  

sw,,, =(y 
h 

Since $,M) = <,, srr\.n (see Equation C12) ,  the maximum accelerat ion 

It is of i n t e r e s t  t o  es tab l i sh  the input duration time At= below 

which the input can be regarded as an impulse. The impulse region is 

defined as pertaining -- t o  duration times tha t  a r e  s h o r t  enough that f u l l  

overshoot is not a t ta ined ,  and t o  determine the l imi t ing  duration, the 

relat ionships  f o r  2 b U ) r e l e v a n t  t o  the impulse duration region, as 

defined above, and t o  the f u l l  overshoot region (long duration times) 

can be equated. 

.. 
P 

It has been shown in Appendix C that f o r  a long duration input,  

the peak mass accelerat ion is from C.10. 
.a 

ijp-) = ( n - d  C 

The peak mass accelerat ion for an impulse type input is given by 

D.16, and p l t t i n g  = ycAt in Equation D.16, the following 

relat ionship is obtained 

.. 

so that on equating D.17 t o  ~ . 1 8  at the  c r i t i c a l  duration time A t c  

which yields 

D.14 

~ . 1 6  

~ . 1 7  

~ . 1 8  

D.19 

D.20 
D.5 



Confining a t t e n t i o n  t o  t h e  p a r t i c u l a r  ca se  of n = 1, ( l i n e a r  s p r i n g ) ,  

t h e  fo l lowing  expres s ion  f o r  t he  peak mass a c c e l e r a t i o n  is  obta ined  

from u.16. 

and t h e  d u r a t i o n  l i m i t  f o r  an i n p u t  t o  be regarded as an  impulse or  

s p i k e  is from D.20 

D. 21 may be w r i t t e n  i n  the  form 

.. 
$(mal, = w v  = w6' atr 

c P 
o r  i f  t he  a c c e l e r a t i o n s  a r e  measured i n  G u n i t s  

G,&Mu> = G c w A k  

T h i s  equat ion  h o l d s  f o r  a l i n e a r  s p r i n g  i n  t h e  impulse reg ion  

where 4 k  4 2 
w 

Spina l  Headward A c c e l e - r s i o n s  

It has  been suggested t h a t  the. maximum t o l e r a b l e  v e l o c i t y  

change,AV , produced by an impulse,  is about I1 f p s . ,  and from 

R u f f  (Ref. D . 1 1 ,  t he  maxjmiim permissib1.e d e f l e c t i o n  of the  sp ine  is 

approximately .O5 f t .  Thus,  from Equation D . 1 5  

from which the  fo l lowjng  v a l u e s  

2 2 n-1) n 3 ( r ad  / sec  / f t  

I 48,400 
6 
7 

2 1..45 x 10 

3 3.87 x 10 

4 9.78 x IOS 

€or  are obta ined:  

M 5 (rad/sec/fn-l) 2 

220 
3 1.205 x i o  

3 6.22 x 10 
4 7.13 x 3 0  

n-1 
-' s max 2 <'(rad/sec) 

220 
270 

311 
350 

D. 21 

D. 22 

~ . 2 3  

D. 6 

. . . . , . 



From Equation D.20 

A reasonable  va lue  f o r  y a t  t h e  c r i t i c a l  t i .mc can be taken  
C 

a t  40 G from t h e  cu rves  p re sen ted  by Eihand (Ref. D.2). and using 

a s  computed above, i t  is  found t h a t  the value  of A t  
lmnte lg  0.009 sec. f o r  a l l  val.ues of n. 

is  approx- 
C 
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APPENDIX E 

THE INFLUENCE O F  DAMFING ON A 
LWEAR S I N G L E  DEGREE OF FREEDOM SYSTEN 

amplification factor  ( sinusoidal inputs) 

damping coeff ic ient  

force 

impulse ( force x time) 

force developed i n  spring 

force developed i n  damper 

spring s t i f f n e s s  

damping constant 

time 

c r i t i c a l  duration time f o r  imp l s ive  input 

veloci ty  

mass accelerat ion re la t ive  t o  fixed datum 

input accelerat ion 

amplitude of sinusoidal input accelerat ion 

steady (s tep)  input accelerat ion 

def lect ion,  velocity ( r a t e  of change of 
deflect ion) ,  acceleration (rate of change of. 
veloci ty)  of spring 

D i r a c  impulse function 

phase angle 

spring frequency 

damped frequency ( W , ' =  cvz- cL ) 

sinusoidal input frequency 

constants used i n  reducing Equation E.23 
to prtial f ract ions 

E.l 



Damping 4s always present i n  a mechanical system, and the human 

body is no exception. Physically, t h i s  mean8 that r ibra t ione  set  up 

in the body w i l l  gredually d i e  aut, and the peak values obtained vi11 
be mduced. The basic d e l  can be modified t o  include the influence 

of damping, as shown in Figure E.1, where the overal l  damping e f f ec t  
is repnaentcd by a "dash pot" mechanism, which may be regarded as a 
loose f i t t i n g  plston moving in an o i l - f i l l ed  cyl inder  that introduces 

a dmcoua f-ictioael renl8tance, proportional t o  the velocity. 

y (IMSS or output * accelerat ion)  

damper (damping constent 2x1 
frequency w 1 

accelerat ion)  

(spring 

Figure E.l 

When the mima mwes n l a t i v e  t o  the datum, a force 
the damper which is equal t o  the damping constant x spr 

FA = Z K g  

d.*.lOps 

ng veloc 

in 
t y ,  I..., 

E.1 

The damp- constant has been taken as 2K simply f o r  convenience when 

handling the equations that govern the motion of the system. 

The force developed i n  the spring due , t o  compreesion ,is that 
d e s c ~ b e d  in Appendix B, and is given by 

F,= k s  E.2 

These two forces act on the mass! resu l t ing  in an acce lemt ion  
given by 

.. 
A s  shown i n  Appendix B, r: gC - 6: , and the above equation becomes 

r 

E.2 



I 

K 
“P 

, and s e t t i n g  - = C, the  equation Remembering that U”s M~ 
of motion of the system can be wri t ten 

k 

.= &g + 2 C L  i3- E.3  
.. 
% 

It should be noted that when damping ia included i n  the  system, 
t h e  t o t a l  force developed is not j u s t  that i n  t h e  spr ing,  but has an 
addi t iona l  component, due t o  the damper. This  means that a tolerance 
c r i t e r i o n  could be based on the t o t a l  force- (or ma86 acce lera t ion)  or 
the  spr ing  force (or  S I .  I n  e i t h e r  case,  E.3 has t o  be solved for 6 , 
and t o  eimplify the  mathematics, a 

gc = H 

w i l l  be assumed. 

s t e p  input  of the f o m  

Again making use of the  Laplace transform method i n  solving the equation 
of motion, L g k )  = r(P) , and E.3 can be transformed t o  

w = z  4- 2 c . p  + p’x = o( 

for 6 = 0, 

or veloc i ty  at zero time. Then, 

o( 

= 0 at t = 0, which assumes the spr ing  has no def lec t ion  

Y = - 
p1+ Z c p  c w1 

A d i r e c t  inverse  Laplace transform e x i s t s  f o r  the denominator, and three  
so lu t ions  are obtained depending on whether W is g r e a t e r  than, l e s s  than, 
or equal t o  C . 

z 

2 

3 If W s C1 , the effect of the damping is such t h a t ,  when the  forcing 
function i s  removed, the  displacement (or def lec t ion)  of the  mass 

approaches zero asymptotically,  without o s c i l l a t i n g  about the  
pos i t  ion. 

6 = 0 

Under these conditions,  the system is s a i d  t o  be c r i t i c a l l y  damped. 

For t h i s  case, the  so lu t ion  of E.3 is 

r 
When dZ < C , the damping is so great  t ha t ,  when the forcing 



function $8 removed, the deflection returns  t o  zero slowly with a 
dead beat motion. The eolution ie 

where (-In), (-n) are the roots of the equation bx + 2Cp + Ws I 0 

2. 
When Wa>c , the case most applicable t o  the human body r e su l t s  - 

since it represents a system where the damping i e  small, but not 

negligible. 
output amplitude less than the zero damping case. 
the osc i l la t ions  would gradually damp t o  zero. 

The def lect ions of the mas6 a re  periodic, but with the 
In t h i s  case, 

When W'> ea , the 
motion is described as sub-cr i t ical ly  damped. 
equation of motion i n  t h i s  case is 

The solut ion of the 

Writing 
./&(q + 4 )  = A& mot - 4 4- - wJ--- B 

and using the f ac t  that sin jb = so , and cos $% =; , E.4 can be 
writ ten 

cr, 

Different ia t ing w i t h  respect t o  time gives 

80 that 

E.5 

E.4 



A fur ther  d i f fe ren t ia t ion  with respect t o  time gives the spring 

acce l t  rat ion 

E.6 

Making uae of the $d relationships,  E.6 can be written 
., s = - d e - C t  ,W d a o t -  

WO .. .. .. 
Since gP = yL - 8 , the expression for the mass acceleration is 

A n  a l te rna t ive  expression f o r  the mass acceleration can be derived 

from E.6, viz. 

When the damping i e  removed, c = 0, and c 3 , = W  , and E.9 readily 

reduces t o  the undamped cast  discussed in Appendix B. 

B.10) 

(See equation 

.. 
The maximum value a t ta ined  by gp for a s t ep  i n p t  w i l l  now be 

determined. Different ia t ing E.9 yields  

The turning points a r e  obtained by equating t h i s  expression t o  zero, 

and since e-='ie posit ive fo r  a l l  values of t ,  

so that 

E.7 

E.8 



and the s ine  is negative when the cosine is posit ive,  and vice versa. 

Hence 

., 
is a maximum when t h i s  expression is negative, and evaluating r 

the terms inside the brackets gives 

The expression within the bracket is always posi t ive,  so d'Gp 
is negative when the s ign outside is negative, and the peak mass cCt' 

acceleration occurs when 

Subst i tut ing the values of E.10 in E.9 gives an expression f o r  

the peak mass acceleration 

Therefore, 
&plM\ .. - - o ( ( , + e - c t )  

- 
Note thfit i f  c = 0, t = II , and E . l l  reduces t o  

2 d  

E.6 

E.10 

E.U. 

I 
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as predicted by Equation B.lO. 

a system is influenced by the  choice of damping values 

Figure E.2 shows how t he  output of 

output t o  
input  r a t i o  

damping r a t i o  c 
;3 
0 (1)  

1 0.2 (2) n 0.5 (3) 

25 
Figure E.2 

Impulsive Input 

4 i i  

The Dirac impulse funct ion w i l l  be used i n  solving the equation 

of motion. Such a funct ion is zero everywhere except a t  t = 0, when 

i t  is i n f i n i t e ,  i n  such a way t h a t  

iGk)  dt = 1 
-a 

where A (t) is  the Dirac function. The equation of motion i s  

. .  A&) = V A&) 

where F is the  impulse ( fo rce  x time) appl ied a t  t = 0. The 

Laplace transform f o r  S = 0, 
0 

6 = 0 a t  t = 0 is as follows: 

u1.x .+ 2 c p x  + p 5 L  = pv 
where is the ve loc i ty  achieved by the system. Hence, 

P V  
y =  - p=+ 2cp -e Lo1 

The inverse Laplace transform g ives  

- c r  
8 = ve + W J  

d 0  

E.12 

E.7. 

E.13: 



x a 
where W ,  = WI-C 

c r i t i c a l l y  damped case. 

, and E.13 holds for Wz?cr ; i.e., the sub- 

The maximum defl.estion is obtained by invest igat ing the turning 
paints  of LE. 

equating t h i s  expression to  zero gives 

cw w,t = k 9  
C 

This implies two conditions since the angle might be i n  the p t l i t i v e  
o r  negative quadrant. A second d i f fe ren t ia t ion  gives 

For a m f z "  de.fle_ctionL tbie expreesion is nejqative. From E.l!+, 

the s ign depending upon the quadrant that contains U&. 

these values i n  E.15 gives 

Subst i tut ing 

which leads t o  

- C& d '6  S h o e  e is alwaye posi t ive,  is negative when the angles are i n  
the posit ive quadrant; i.e., a maximum occur6 under these conditions. 

E.8 



1. .. .. .. . I  

Now, s i n c e  

acce lera t ion  fo r  maximum def lec t ion  is 
sL = 0, and y,, = GL - s , 8 

.. 1 la 

= -6 , 60 t h a t  the mass 

= p v  (hi, +cl) % 
but  w,” = ma- C L ,  so 

E.16 

Now the maximum mass acce lera t ion  does not occur 

def lec t ion  is a maximum (s ince  damping i s  present).  

t h i s  condi t ion,  Equation E . 1 3  is used 

s =  V d C t  - A h b k  

mo 

and 

when the 

To inves t iga te  

,u g C L - ( w a C w 3 k ) , t T -  c A w 4 t )  
a 0  

which can be w r i t t e n  i n  terms of a phase angle # as 

(This  can be proved by expansion of the s i n  ( LJoC + 4 
the  s i n e  and cosine values given above). 

term, using 

Again, by similar reasoning 

E.17 



The turning points of E.17 are given by d g k p  ’’ = 0 

i.e., when 
+ C u 4  (w,t+ 2@1 = 20 

E. 18 

From ~ . 1 8  

The s ign depending on the quadrant as before. 
is negative when the s ine and cosine a re  negative. 

shown by evaluating dl’d,/dka as was done i n  deriving E.15). 

The above expression 
(This can be .. 

Hence, the peak mass-acceleration is given by 

E.19 

When c = 0, E.19 reduces t o  

$FohDc) = v u  

which agrees with the non-damping case of Equation D.21. 

It can be seen from E.18 that as the damping coeff ic ient  is. increased, 

the time t o  reach maximum mas acceleration is reduced, and will occur 

at  t s 0 ,  for damping coefficient8 grea te r  than a cr i t ical  value c ~ .  
When t D 0 

- b o  . C a , z q b - ;  

and evaluating tan 2# i n  terms of t a n +  ( tan  $d I -2) 

E.10 



and for > 2 the  maximum occurs a f t e r  t = 0. 

It is of i n t e r e s t  t o  show how the  damping term Influences the 

duration__time f o r  which the  impulse theory is-applicable. From E.19 
~~ 

- 
-Ck, $pa.) = $=kI w e  

2khau) = gLC[+e-c t )  

where t ,  is the  c r i t i c a l  duration. 

subjected t o  a long-duration input is given by E . l l  as 

The mass acce lera t ion  for a system 

.. 
The c r i t i c a l '  durat ion time occurs when these two expressions a r e  equal 

as suggested i n  Appendix D. Hence, 

Expanding the  exponentials gives  

If terms in C are ignored the undamped condition *, m ie obtained, 
a 0 

and neglecting C terms gives  

t , -ct - ,2  = 2 f - c t  
W 

aolving t h i s  equation gives  

) "= l + c ( z - c k >  
t, = I . + - ( I -  w 

2 c  
Now from E.10 

w,t = 

and i f  the  damping is s m a l l ,  

2 c  
(hot = taM-'(- q)  

80 that 

(for small angles where t a n  0 = 8 ) 

E.ll 



Using t h i s  value i n  the expression fo r  t l  , the following is obtained 

2 c  

Now, W? = -'- Ca = doa f o r  small damping e f f ec t s ,  and a 

solution f o r - t  I is obtained _by expanding the expression under the 

Since the negative part of the root is relevant i n  t h i s  case, 

( the  smallest value of t , is required) 

2 
and again neglecting terms, 

E.20 

Sinusoidal Input Acceleration 

In t h i s  sect ion an acceleration of the form 

l e  considered, which represents a s ine  wave of amplitude &6 and 
frequency R 

The equation of motion f o r  a damped, single  degree of freedom system is, 

from Equation E.3 

The Laplace transform of sin f i t  is 

E.12 

.-...- I... I I, I , ,. ,,..,., ., 
I 



and E O ,  f o r  the i n i t i a l  conditions 6 = 6 = 0 the Laplace transform 
of Equation E.21 is 

Tharefore 

E.22 

12-23 

To perform the inverse transformation, the r ight  s ide  of Equation E.23 
must be expressed In p a r t i a l  fractions.  

Let 

Combining the terms i n  t h i s  Equation gives 

and equating coeff ic ients  of powers of p i n  E.23 and E.24 gives the 
following set of equations f o r  d and f l  

d , + d l  = 0 (a) 
p , + ; C C # 2 + p a  = 0 (b)  

p,RZ+p%Wa 3 0 (d)  
~ , J I ~ + W % ~ + X C / ~ ~  = 1 (C) 

Subst i tut ing f o r  & I  from E.25 ( a ) ,  E.25 ( c )  gives 

( ~ a - d x ) d ~  + 2 C F z =  1 

and for f i ,  of E.25 (d)  i n t o  E.25 (b) leads t o  

2 c a 1  

These two equations a r e  rewritten 

E.25 

E. 13 



C r o u t ' s  formula is now used t o  solve t h i ~  p i r  of simultaneous 

equations when the following values of o(= and P a  are obtained 

Values for di and (3, then follow from Equations E.25(a) and (d) 

Subst i tut ing f o r  the d ' S  a n d p ' s  i n  E.23(a) gives 

The inverse Laplace transfonns (Nos. 50, 51, 11 and 40 of 
Ref. E.1) a re  used t o  give .. 

E.28 

a 2 - n z / 5 ( ; v a k  - 2 c m n t . l  
+ a  

where 9 = tan-' $0 and W, = (ba-Ca)"'- 
C 

The solut ion f o r  6 has two d i s t inc t  parts, one part 

with a frequency ( G o )  dependent upon the parameters of the system, the 
second part 

w i t t  the frequency (a) of the forcing function. The f i r s t  and 

E.14 



second parts of t h e  s o l u t i o n  are known as t h e  Transient Solut ion 

and t h e  Steady S t a t e  Solu t ion  respectively.  

h e  a f a c t o r  e-'', so that as t increases  so the  amplitude of t h i s  

o s c i l l a t i o n  decreases and t h i e  motion i e  eventual ly  damped out ,  leaving 

only the  s teady state solut ion.  

The t r a n s i e n t  so lu t ion  

Although t h e  absolute  maximum usual ly  OCCUTS while the  t r a n s i e n t  

solution ie still e i g n i f i c a n t ,  the  s teady s t a t e  so lu t ion  is of grea t  

importance for long durat ion inputs  of an o s c i l l a t o r y  nature ,  and 

t h i s  case only w i l l  be invest igated.  

The phenomenon of resonance is w e l l  known and w i l l  be demonstrated 

with the  use of t h i s  model. 

~ . 2 9  

which can be wr i t ten  .. 

This so lu t ion  is  a s i n e  wave, out of phase w i t h  the  input  acce lera t ion  

and of amplitude 

The r a t i o  

f a c t o r  and can 

A of output t o  input  amplitudes is the  Amplification 

be w r i t t e n  

I 

A =  { ~ ~ = - ~ x y +  ~ n a 3 ' ' ~  

which must be maximized w i t h  respect  t o n  t o  obtain the l a r g e s t  r a t i o  

of  output t o  input  accelerat ions.  

~.15 



A maximum o r  minimum occurs when 

I so CA - 

so that e i t h e r  
( (&Jy)Z.+  4c=a= = 0 

o r  
rr = o  

The f i r s t  expression is the  sum of  two squares  and so f o r  r e a l  we , 
w and G cannot be zero except f o r  the  t r i v i a l  case (no motion) 

q, = W = C = 0. 

forcing funct ion is zero a t  all f i n i t e  t i m e ,  again t r i v i a l .  

second expression g ives  

The t h i r d  expression is a statement t h a t  the  

The 

- - 2 x  .= L4J=-2c-c'L 

for which the  following value of A is obtained 
I - I 

A =  
i ( z c a ) l  4- 4~'CLU.~-ZC1-~3'/5- - 4c4 + 4 C ' W 2 -  s c q  ''7- 

I 

2 c (b=- c v -  2 C U "  

Now i ( w  I--')' -f- 4 c ' a '  3 .- "a has a maximum when 

(a~.-fi'l)~ + 4C'_n' h a s  a minimum s ince  the l a t t e r  expression 

i f  pos i t ive  f o r  a l l  real values of the  var iab les ,  so the  l a t t e r  

expression need only be invest igated.  

E. 30 

~ . 3 1  

~ . 1 6  



The condition f o r  a maximum or minimum from E.30 is Ra= Wa-2Ca 

80 that using t h i s  condition i n  the above expression givea 

- Q + 12 ~ w ’ -  2 CZ) 4 8 C’ = 9 ma - Ibca 

= g ( w = - z C a )  

So if U’- 2C’ is posi t ive,  a maximum occurs i n  the expression 

and the amplification fac tor  bas a maximum value ( f o r  the steady 
s t a t e  case) when W’- 2 C a  and has the value 

I t  can be seen that the zero damping case implies i n f i n i t e  
magnification, but when any damping i a  present f i n i t e  values resu l t  
that are smaller f o r  high frequency systems and high damping 
coefficients.  

E.17 
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EJECTION OF ESCAPE CAPSULE OR SEAT 

9, hM ampl i f i ca t ion  f a c t o r  ?r. 

app l i ed  force 

=, ' 
9c 

for steady app l i ed  force 
y c  

s p r i n g  s t i f f n e s s  

mass of occupant 

mass of  capsule 

v e l o c i t y  

v e l o c i t y  from r i g i d  body theory 

v e l o c i t y  from sepa ra t e  mass theory 

a c c e l e r a t i o n  of mass m r e l a t i v e  t o  
f ixed  datum C 

a c c e l e r a t i o n  of mass m r e l a t i v e  t o  
f ixed  datum P 

i n i t i a l  a c c e l e r a t i o n  a t  t = 0 

d e f l e c t i o n ,  v e l o c i t y  ( r a t e  of change of 
d e f l e c t i o n ) ,  a c c e l e r a t i o n  ( r a t e  of  change 
o f  v e l o c i t y )  o f  sp r ing  

i n i t i a l  ( s t a t i c )  s p r i n g  d e f l e c t i o n  

s p r i n g  frequency (n = 1) 

= w, 2. 

F. l  



During t h e  e j e c t i o n  o f  a n  escape cap:;ule o r  s e a t ,  t h e  i n i t i a l  

phase c o n s i s t s  of a n  a c c e l e r a t i o n  up the  e j e c t i o n  rails, caused by a 
rocket supplying a fo rce  F. Large p o s i t i v e  s p i n a l  accel .erat ions a r e  

imposed on t h e  occupant, and i t  is  important t o  determine, a t  the  

design s t a g e ,  whether t he  a c c e l e r a t i o n s  are phys io log ica l ly  to l e rab le .  

man-mass 
a c c e l e r a t i o n  

ma88 of 

T occupant 

.. 
YC i npu t  a c c e l e r a t i o n  

P C 

frequency 
w 

mS8 Of 
capsule o r  
seat 

Figure F.l 

!!sing t h e  simple model of Figure F.l, where m and m are t h e  

occupant and capsule  (or g e a t )  mass r e s p e c t i v e l y ,  t h e  equat ions of  

m o t i o n  can be obtained by applying Newton's second l a w .  Conside?-ing 

- the occurant ,  .- t h e  a c c e l e r a t i n g  force i s  t h a t  developed i n  the spring, 

hence 

where a non-linear spring has been assumed. 

Remembering (see Appendices B and C) t h a t  
.. .. .. 

y p -  v c  = - 6 
tti? P.bove equat ion becomes 

2 kh 
Mr 

a n d  itdopting t h e  n o t a t i o n  of Appendix C, t h a t  a, = - = 5, t h i s  

esI*-':ion can be writ ten 

c 
F. 1 

F.2 

,. , ., . I, .I ... ,, . . . . .. . .. .. ... _...._... , 



Considering the  mass the  resu l tan t  force a c t i n g  is the  difference 

between the  appl ied force and the "reaction" developed i n  the spring. 

Hence, 

C'  

so  that 

and s ince  

i t  follows t h a t  

Equating F.l and F.2 gives the equation of motion 

Constant Force Application 

A s  i n  Appendix C the  s u b s t i t u t i o n  q = k is made; .. 
therefore ,  6 = $,-,. d-% , and F.3 can be wr i t ten  

5 = f (say)  
M C  

where 2; has been replaced by M f o r  convenience. Transposing and 

i n t e g r a t i n g  y i e l d s  s,** 
J{ f - r , S " ( l + M ) ]  

0 5 s  
The i n t e g r a t i o n  l i m i t s  have been taken from 

t o  SmoZ , t h e  maximum def lec t ion ,  which corresponds t o  a range of q 
from zero t o  zero,  as explained i n  Appendix C. 
could be due t o  some i n i t i a l  g f i e l d  at time t = 0 which can be 

included in t h e  quant i ty  f. 

8 s  , the  s ta t ic  def lec t ion ,  

The s ta t ic  def lec t ion  

The l e f t  hand s i d e  is zero f o r  t h e  
l i m i t s  shown, so 

6s 

F.3 

F. 2 



Since the  i n i t i a l  a c c e l e r a t i o n  can be wr i t ten  

F. 4 

F. 5 
.. 

Again, t h e  peak miss acce lera t ion  i8  given by 
h 

so that s 

and F.5 becomes h+l 

F.6 

If ss = 0, equat ion F.6 reduceis t o  
in" 

or 

If n = 1 * ( l i n e a r  

is given by 

F 
Note that mTc 

spring), t h e  peak (man) mass acceJeration 

mc + mp 

I s  the  acce lera t ion  obtained when regarding the  

two masses as a " r i a i d  body," and the r e s u l t  i s  i d e n t i c a l  t o  t h a t  

given i n  Equation ~ 1 6 .  
s t e p  input ,  the  acce lera t ion  h is tory  obtained by taking t h e  occupant 

and capsule as a r i g i d  mass, can be used t o  a s s e s s  t o l e r a b i l i t y .  

'The conclusion is, t h a t  for a long durat ion 

F. 8 

F.4 



It is possible t o  define an amplification fac tor  given by 

peak accelerat ion on occupant 
peak accelerat ion on capsule A t  

The peak accelerat ion of the equivalent occupant's mass is given by 

F.8, and the peak capsule acceleration is at ta ined when the force 

developed i n  the spring, i n  opposition t o  the applied force, is zero. 
Hence 

F 
C W l C  

and 

Thus, the l ighger  the capsule i n  re la t ion  t o  its occupant, the lower 
- is the r e l a t ive  accelerat ion amplification. However, the peak 
occupant accelerat ion is always twice the value which would be 

calculated i f  the capsule and occupant were regarded as a combined 

r i g i d  ~ S S .  

Impulsive Input 

I n  the present context, an impulsive input would be a force F 
which lasts only fo r  a short period, 

def lect  s ign i f icant ly  ( the  force developed is small). 
A t ,  so that the spring does not 

Newton's l a w  

gives 

aiv?n& a veloci ty  change 
# 

which i e  grea te r  than that calculated from r ig id  body theory. 

the spike input has been removed, the motion of the spr ing continues 

and the velocity change given above const i tutes  an i n i t i a l  condition 

fo r  the subsequent motion. 

After 

The equation of motion is now 

F.5 



F.9 has t o  be integrated between cer ta in  l i m i t s  which must be 

ascertained. 
veloci ty  vc x 6 t o  the spring a t  t P 0, when i t  can be a88UWd 
the def lect ion S is sera, and when the maximum deflect ion sMor 

The veloci ty  change due t o  the spike input gives a . 

i e  reached, the veloci ty  ie again zero. Thus, subs t i tu t ing  
q 6 , as before, t $. 2 and 

e 

which d v e s  

k 

Now, using r ig id  body theory, the initial veloci ty  change is given by 

Fht  Av, = - m e + w e  
whe reas 

F At A v ~  = - 
'y)C 

Therefore, 

SO tha t  Fa10 ~ ~ C O I I I O S  

F. 10 

F.6 



lf F.ll is compared with D.16 of Appendix D,  i t  can be seen that the  

two equations are i d e n t i c a l  ( i n i t i a l  def lec t ions  have been ignored 

i n  deriving F.11, but could e a s i l y  have. been included). 

can be concluded t h a t ,  employing the spring-mass analogy of the  human 

body, a man-capsule system subjected t o  an impulsive input  can be 

analyzed by the r i g i d  body theory. 

Hence, it 

The r e s u l t s  of t h e  analyses  described i n  t h i s  Appendix might 

appear somewhat negat ive,  but it has been possible t o  demonstrate 

mathematically that t h e  dynamic model of a two mass system can be 

t rea ted  as a r i g i d  body i n  ca lcu la t ing  the peak acce lera t ion  output 

of the equivalent m n  mass. 

- 

_..- - 

F.7 



APPENDIX G 

THE EFFECT OF A LINEAR CUSHION ON TOLERANCE LIMITS - EQUIVALENT SYSTEMS 

SYMBOLS 

C 

EC 

F 

k 

K 

m 

t 

A t  

A t C  

V 

.. 
yP .. 

w 

R 

s U F F I  c IELS 

1 

2 

B 

S 

damping c o e f f i c i e n t  

energy absorption capaci ty  of cushion 

spr ing  force 

spr ing  s t i f f n e s s  

damping constant 

mas5 

t i m e  

durat ion of input  acce lera t ion  

durat ion l i m i t  f o r  impulsive theory 

ve loc i ty  

mass acce lera t ion  r e l a t i v e  t o  f ixed datum 

input  acce lera t ion  

s teady input  acce lera t ion  

def lec t ion ,  ve loc i ty  ( r a t e  of change of 
d e f l e c t i o n ) ,  acce le ra t ion  ( r a t e  of change 
of veloc i ty)  of spr ing 

spr ing  frequency 

man 

cushion 

conditions a t  bottoming of cushion 

i n i t i a l  ( s t a t i c )  conditions 

G.l 

I 



When a cushion or other  form of e l a s t i c  r e s t r a i n t  is placed i n  
s e r i e s  with the  human body, the system can be represented a8 i n  

Figure (3.1. The presence of the  dampers complicates the problem 

considerably,  s i n c e  t h e  proportion of t h e  r e s u l t a n t  force  t ransmit ted 

by damper or spring depends on the mechanical c h a r a c t e r i s t i c s  of each. 

0 .  y (mass or output 
P acce lera t ion)  

I m 
P 

MAN 

Fq 2Kl  (damping constant)  

- - -  - - -  
CUSHION 

Fq 2K1, 
(damping constant)  

( input  acce lera t ion)  
Figure G.l 

If e i t h e r  the  dampers of the  spr ing are removed, each system 

This can be reduced t o  a simple equivalent spr ing  or damper. 

s i m p l i f i e s  the  mathematics and, although not  a complete representa- 

t i o n  of what a c t u a l l y  happens, w i l l  g ive some i n s i g h t  i n t o  the 

inf luence of the var ious components on the occupant. 

Equivalent Spring System 

I n  the s t a t i c  case, a force F would produce def lec t ioIs6 ,and  

i n  the  man and cushion spr ings ,  respec t ive ly ,  so t h a t  

G.l 

G.2 



I f  the two springs a re  replaced by a s ingle  equivalent spring, 

the deflection would be s and the force-deflection relat ionship 

ie 
F J  ks = k ( S , + S A  

Hence, the equivalent . . s t i f f n e s s  is given by 

A The equivalent natural  frequency W =  Jz,, 
can be represented by 

follows from (3.3, and 

Equivalent .. _ _  Damper System 

For two dampers alone i n  ser ies ,  i t  can be argued s imilar ly  

t h a t  

and 

Hence, the equivalent ~ ~ damping conetant is given by 

and the equivalent dampirg coeff ic ient  C = ,K becomes 
M P  -~ 

(3.2 

(3.3 

0.4 

0.5 

0.6 

G . 3  



Model with Zero Damping 

If the cushion-man system is now represented by a single 
equivalent spring of frequency , the solutions already deduced 
apply. Thus, for an impulsive input, the peak mass acceleration 
is given by D.16, and for a linear system (n = I 1, this becomes 

The duration Atc which limits the impulse theory is from D.22 

.. 
Now, since v = yL hl- , employing a.7, the following ratio 
can be formed 

For times greater than tc, the ratio given in G.8 becomes 2, 

since for an undamped system the overshoot of the ouput is 1OC%. 
Hence, 

g(tnr*) ,, = 2 f.. A k > A k c  

3c. 
It follows that although a cushion does not reduce the severity 
of a long period acceleration, it can be beneficial in the impulse 
region. This conclusion is based on the fact that the cushion 

does not bottom. The influence of the cushion can be seen from 
the relationship 

a.7 

G.8 

G.9 

This ratio is plotted in Figure G.2, which illustrates the fact 
that for a non-bottoming cushion, the attenuation of the input 
is greater for large values of R = k ' /k i  i.e., for low cushion 

frequencies. 

G.4 

I 



1.0 non-bottoming cushion 

ratio of 
y (ma) 
with cushion 
to y (max) P 
without 
cushion 

P 

I I I I .  

2 -0. 410 6.0 8.0 
spring stiffness ratio ~ I P S L )  

0 

kt  
Figure G.2 

Cushion Bottominq 

Bottoming o f  the cushion occurs when the deflection of the 

cushion spring has a value 6 z e  (say). 
in the spring is 

At this instant, the force 

F, = k,&, = k I b  

so that 

Just before bottoming, the kinetic energy of the system 7'. mp Ava 

where 
to the impulse, is distributed as potential enerw and kinetic 

ener~y of the various parts of the system. 
the lower spring retains its potential energy only. 
impulsive input is under consideration, the mass does not move its 

position initially, although the spring (k,) may have velocity SI , 
due to compression. As shown previously, the maximum deflection 
of kt g . 8  is zero, so 

that the surplus energy is given by 

Avis the velocity change of the application point due 

When bottoming occurs, 
Since an 

will be attained when the epring velocity 

G.5 



i.e., total kinetic energy of the system minus the potential energy 

retained by spring k, will appear ae potential energy stored in 
~pring h . Hence, 

and 

0.10 .. a 
Nbw,  SI,& sp (max) and 1 kxs,, is the total energy 
absorption capability of the cushion (E 1. 
rewritten 

2 
Hence, 0.10 can be 

C 

BO that the peak mass acceleration i s  

If allowance is made f o r  some initial deflection 

G.10 becomes 
8s in the springs, 

and G.ll takes the form 

.. 
where l& = w& = wj%s 

The condition f o r  bottoming is that the available kinetic energy 

must be equal to, or greater than thepotential energy storing 

capacity of the system, i.e. 

where the suffix €3 implies conditions prevailing when spring k 
bottoms. When the two sides of the above expression are equal, the 

velocity chanRe that will just cause bottoming of the cushion can be 

8.12 

G.6 



or 

When ij.s = 0, G.13 simplifies to 

(3.14 is plotted in Figure 
stiffness on the bottoming velocity ratio. 

G . 3  to show the influence of cushion 

4 

3.0 - 
increasing y 

6 

b 

- I ' - 1  ==i==== 1 1 1 I I I 

2.0 4.0 6.0 

G.13 

(3.14 

Figure G . 3  
Thus, for a low value of k,, (i.e., a weak spring), the bottoming 
velocity is small, whereas a large k, also implies a low bottoming velocity 
since the spring deflects only a small amount and cannot store 
large amounts of energy. This latter point has important implications 
when considering the direction of application of the impulse, since the 
natural frequency of the body (Wki)  is different for each direction. 

The attenuation of the input acceleration for non-bottominR velocitg 
changes is given by G . 9 .  For values of h V  > A %  from G.ll 

G.7 



so tha t  

g,, m u  (with cushion) 

gp mar. (no cushion) a.15 

I n  t h i s  case, the energy absorption capacity of the cushion is 
important, but the s t i f f n e s s  r a t i o  (fi) does not en te r  the expre8sion. 

Equations G.9 and G . l l  show t h a t ,  i n  impact cases, the presence 

of a cushion is always beneficial .  

Long Duration Input 

I f  the cushion does not bottom, the usual 100# overshoot w i l l  

occur (no damping). 
has been deduced in Appendix B. 

The general solut ion of the equation of motion 

From B.7 

which re fers  t o  the equivalent spring. Now, the equivalent spring 

deflect ion must be the sum of the individual def lect ions,  eo 

8 = S , + &  
and since from G . l ,  k,S, = k,& 

Now bottoming occurs when 82 = gz, at t = t g  and from (3.16 

Using the value of W given by G.4 gives 

= d( I - M L J b )  

I f  the accelerat ion needed t o  bottom the cushion is defined by 

and from ~ . 1 8  -. 

a.16 

a.17 

a.18 

G.19 

G.20 

G.8 



Differentiating a.16 gives the spring velocity at bottoming 

cu 
80 t ha t  

Remembering that &"e * 
equation becomes 

= I and using (3.20, the above 

Equations ~ . 1 8  and G.21 give the values of the equivalent spring 
deflection, and velocity a t  bottoming. Subsequent motion w i l l  
a f f ec t  only the spring k~ , and the equation of motion can be 
eolved using ~ . 1 8  and (3.21 t o  provide the i n i t i a l  conditione, 

i.e.* taking t c  as the new t = 0. 

The equation of motion is 

dls + h = S  = d 
d t= 

and the Laplace transform of t h i s  equation is 

the inverse Laplace transform gives 

Subst i tut ing X O  = &a and XI gives 

Where Ci, is now Wt , since spring is fully compressed. 

Using the values of sla and of G.19  and G.21, the above 

G.9 

9.21 

6.22 



and O:s= &, . The above equation can be rewrit ten,  including 

(This a tep  can be shown by expanding s i n  (a,t++ ) in Equation G.23). 
The turning points  of $fp occur when &%/dt= 0, i.e., when (w&+@ 
has values of '%- i3% etc .  For maxima, da%/& 1s negative, 

i.e. * when ( W1 k -& @ ) ha6 values 

.* 

- 
3G& > '% etc. 

Hence, the maximum mass accelerat ion a f t e r  bottoming has occurred 56 

1 .  

Note tha t  i f  & = 0, L e . ,  the cushion is already bottomed, 0.24 
reduces t o  the usual expression 

or 
 bo^ 7 i+n-d 
28 

the  overshoot is grea te r  than lo(%, which means that, under these 

conditions, bottoming during a long duration input can have serious 
consequences. 
m.. 

A plot  of the r a t i o  peak mass accelerat ion t o  input accelerat ion 
is given i n  Figure (3.4, for various values of 

.. 
( 9dmu'/d ) against  

gB . 
s t i f f n e s s  is advantageous when bottoming can occur. 

a r e  above ?hMu!vd 
duration is long enough f o r  f u l l  overshoot t o  have been obtained. 

0. 

The graph i l l u s t r a t e s  the f ac t  that decreasing the cushion 
A l l  the curves 

= 2, , since no damping is present, and the pulse 

G.10 

I I I 111111111 I. I I I I 

0.24 

I I 



peak mass 
acceleration 

acceleration 
r a t i o  

t o  input 

stiffness of body sur - 3  -fi 
stiffness of cushion sing kr 

Figure G.4 Effect on Man-Cushion Frequency Ratio on Peak Body Response 
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SUFFICES 

1 

2 

REWUND IN A LINEAR SYSTEM 

SYMBOLS 

spring s t i f fness  

mass 

mass acceleration relative t o  fixed datum 

input acceleration 

time 

duration of input acceleration 

time when restraint becomes active 

step function input 

deflection, velocity (rate of  change of 
deflection),  acceleration (rate of change 
of velocity) of  spring 

phase angle 

spring frequency 

man 

re st raint 

H. 1 



A l i n e a r  s i n g l e  degree of freedom system (Figure H.l) w i l l  be 

used t o  i n v e s t i g a t e  the  magnitude of the acce le ra t ion  imposed on a 

human during a rebound process. 

1 - 
s t e p  input  ( sp r ing  

stiffness) 

( sp r ing  
s t i f f n e s s  1 

.. 
yc 

( i npu t  
accelera- 
t i o n )  

yc ( inpu t )  

t ,  (time t = O  t = t, 

Figure H.l 

The occupant of a seat o r  capsule is represented by the  sp r ing  k, , 
and k, is analagous t o  some r e s t r a i n t  device which might be a 

harness ( i n  extension)  or a shock absorber ( i n  compression). 

function input  (d ) of duration t ,  is appl ied t o  the base of the 

sp r ing  k, , which causes the sp r ing  t o  compress. 

removed and the  sp r ing  r e tu rns  t o  i t s  o r i g i n a l  pos i t i on  ( s, = O), but 

with a v e l o c i t y  6, . Up t o  t h i s  point i n  t i m e  ( t z  , say ) ,  the spr ing 

kl has been i n a c t i v e  s i n c e  the r e s t r a i n t  only a c t s  when the  

occupant l eaves  h i s  s e a t .  For t > t, , kl is inoperat ive and k x  
def l ec t s .  

A s t e p  

A t  t ,  the input is 

Up t o  t = t i  the  equation of motion of the mass takes the form 

derived i n  previous appendices , viz.  
.r ‘de = 6 .= w,26+6 H. 1 

The s o l u t i o n  of t h i s  equation is developed i n  Appendix B (Equation B.7). 

When t L ? * ? * i  , the  equation of motion is 
.. 

WI2S +s = 0 H.2 

which a l s o  has  been solved i n  Appendix B, us ing and 6 (irom H . 1 )  

H.2 



a t  t = t , ,  as the i n i t i a l  conditions. (See B.17 and ~.18). 
form of the solut ion given is 

One 

where XO and XI are the i n i t i a l  values of s and 6 , respectively. 

so t ha t  expanding the sin ( w,t+@) tenn of H.3, and subs t i tu t ing  

these values, leads t o  

where time is now measured from t = t , .  

During the rebound phase, s t a r t i n g  a t  t,, the equatgon of motion 
.. a i s  + s = 0 

since there is no applied input. Now, at t = tZ,  si = SZ = 0 

is 

H.5 

and the solution of H.5 is s i m i l a r  t o  that given i n  H.3, but with X 0 - O  

i . e .  4 ~ 0 ,  hence 

and the accelerat ion is  obtained by two d i f fe ren t ia t ions  with respect 

t o  time, viz. 
.I 

H. 7 .- - Y , w 2 - ~ 2 ~  
SZ - 

where time is measured from t = t g  

To insure that t i n  these equations is always measured from t rue  zeroL 

H . 7  i a  rewrit ten as .. s, = - Y , W z & W I L t : - Q  

and s imilar ly  H.4 as 

so that the value of XI i n  H.8 is, from H.9 

H.8 

H . 3  



Using t h i s  value,  H.8 becomes 

This expression w i l l  have its maximum value when s i n  t a z ( k - C L )  = 

so t h a t  

For a very s h o r t  pu l se ,  use i a  made of the f a c t  t h a t  the  s i n e  of 

a s m a l l  angle approaches the value of the angle (in radians) .  

Hence, H . 1 0  becomes 

-_I 

f o r  s m a l l  t 

H . l l  

This expression is similar t o  t h a t  de r iv id  i n  Appendix D ( c f . ,  D.23) 
except t h a t  W, r e p l a c e s  Q . 
Note tha t  H . 1 0  i t s e l f  has a m a x i r n u m  value for a c e r t a i n  c.dlTl(.vinput 

durat ion) .  Writing H.10 i n  the form 
.. 
d, [t*I O A  ) = - o( _wz {.A UI tz ( I  - - u, t, ) 4- a(M k) ,  t m w, tl 

k3 I 

t h i s  expresslon is a maximum when cos w l t l  = 0 
and when s i n w l t l  = - I  a-+ W , k ,  = 3:/3-.. .  e t c . ,  so t h a t  

o r  = i<,3i9/L etc . ,  

which has an u l t ima te  maximum when w , c l  ( w  start of rebound) has 

the value "/L e t c .  

Hence 

- 

H.12 

The r e s u l t  resembles the s tandard box 100% overshoot case ,  except t h a t  the 

expression H.12 contains  a frequency r a t i o .  The a p p l i c a t i o n  is q u i t e  

gene ra l  i n  t h a t  (3 ,  and LdL can be regarded as equivalent  frequencies.  

Thus, t he  e f f e c t i v e  con t r ibu t ion  of the spine can be included i n  W Z  

and a s e a t  cushion s p r i n g  i n  Id,. 

ampl i f i ca t ion  is poss ib l e  if the r e s t r a in t  _sEtgm i s  s t i f f e r  than  - the  

system rece iv ing  the. _- ~ i n i t i a l .  i m p u l s e ,  

The equat ions show t h a t  considerable 

_ _  - _  - -_.-_- ___ 

H.4 
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APPENDIX I 

L 

L-' 

m 

n 
P 

t 

t r  
., 
YC 

yP 

P 
s 

.. 

SYMBOLS 

acce lera t ion  due t o  grav i ty  

denotes llLaplce transform oft1 

denotes "inverse Laplace transform of" 

mass of the  system 

an in teger ,  takes  the values 0, 1, 2, 3 etc. 

time 

r i s e  time of  the  input  acce lera t ion  

input  ac c e l e  rat ion 

acce lera t ion  of the  mass m 

rate of onset of t h e  input  acce lera t ion  

def lec t ion  of the spr ing  

frequency of the  mass-spring system 

P 

I. 1 



The fact t h a t  rate of onset inf luences human tolerance t o  rapidly 

appl ied  a c c e l e r a t i o n s  has been recognized by e a r l y  workers i n  the  

human f a c t o r s  f i e l d .  

parameter t o  consider  is the  r i s e  time ( t r )  which is t h e  time 

elapsed before t h e  peak o r  plateau acce lera t ion  is obtained, as 

i l l u s t r a t e d  i n  Figure 1.1, 

As explained i n  the  main t e x t ,  a more usefu l  

p la teau  G ' a  

Yc 
( input  
acce l e r a -  
t i o n )  

L 

.. 
Yp (mass 

c p e a k  G 

(mass 1 

( frequency ) 
w 

yC (input  , 

accel.  1 - d = o  tr , time t = O  tr , time 
(b) (C) 

( a >  Figure 1.1 

A l i n e a r  ramy! type of acce lera t ion ,  followed by a continuous 

constant acce lera t ion  (Fig. 1.1 ( a ) >  is more amenable t o  mathematical 

a n a l y s i s  and w i l l  be used t o  i l l u s t r a t e  the  inf luence of r i s e  time on 
t h e  r e s u l t a n t  mass accelerat ion.  

The equation of motion of the  sLring-mass system (Fig. 1 ( c ) )  is 
derived i n  the  usua l  way (see  Appendix B) and can be wr i t ten  

where the  input acce lera t ion  y has the  values 
C g c = p  for 0 & k G t r v  

$j,*pty constant fo r  tr3 t., 
and 

both of which hav 

78 and 79 of Ref. 

1.2 (a) descr ibes  a ramp function and I.Z(b) a constant input  function, 

d i r e c t  Laplace transforms (e.g. transform numbers 

1.1) which are 
- t r P  -Crp 

- e  ) -p t,e f o r  t h e  ramp function 

1.2 



and 

p t--C typfor the  continuous function 

These two can bo added so the  Laplace transform o f  Equation 1.1 can 

be wri t ten  

where the i n i t i a l  conditions s = 6 = 0 a t  t = 0 t o  apply. 

The inverse Laplace transform of the  first term is 

and f o r  the  second term 
- t, P 

(Theorem VI1 appl ied t o  transform 47 - Ref. 1.1) 

Hence the  spr ing  def lec t ion  is given by 

Applying the bas ic  addi t ion  theorem of trigonometry t o  t h i a  

expression gives  

Since j k =  ds , the  mass acce lera t ion  is  represented by 

Turning points  e x i s t  when 

i.e. when 

,& ,[e-$l., = 0 

where n is an integer .  

1.4 

1.5 



"'& 
The maximum value of 9 e x i s t s  when d t z  - is negat ive,  and 

k 

S u b s t i t u t i n g  the  turn ing  point condition obtained above y i e l d s  

z d t'- 
I .6 

depending on the  quadrant of wk ( - b u t  for n = 0, 2, 4 e tc .  

- Ue for n = 1, 3 ,  5 e tc . )  

of s i n  d t ,  and the  value of n. 
and when n = 1, equation 1.6 is negative when s i n  wJ. is pos i t ive ,  

i . e .  when 

Thus the  s ign  of 1.6 depends on the sign 

The condition n = 0 is of no i n t e r e s t  

2+ 

s o  t h a t  
2 3  t, must be ,< - w 

If n = 2,  1.6 is negative when s i n  is negat ive,  i .e .  when 
x 

so t h a t  t, l i e s  between 25jia 

Summarizing these condi t ions,  the zass acce lera t ion  is a maximum _ _  

and 4 i 1 / ~  

for n = 1, and if ?"vw < k y  $ for n = 2 e tc .  2-6 i f  t,C 
The peak mass acce lera t ion  can then be wr i t ten  

which s a t i s f i e s  the conditions deduced above. 

Now /3t, 

can be formed 

is the plateau acce lera t ion  input ,  and the following r a t i o  

W-C r 
2 

PtY 
which f o r  n = 1 and kl- = 0 reduces t o  

1.8 

1.4 



suv\ ett. 
2 

s i n c e  i n  the l i m i t ,  as t, approaches zero,  

This  agrees  with the  case of  a s t e p  function input  (Equation B.16) 
which corresponds t o  a zero r i s e  time. 

- approaches unity.  
0-k. 
1 

Equation 1.8 is p l o t t e d  i n  Figure 1.2 and s ince  the loca t ion  is 

i n  non-dimensional form, the r e s u l t  is appl icable  f o r  any value of the 
var i ab le  parameters. 

3i1 Liz 
Figure 1.2 

b n  7ii 

These r e s u l t s  i n d i c a t e  t h a t  f o r  very s h o r t  rise times f u l l  

100% overshoot can be a t t a i n e d ,  but as the r i s e  time inc reases  the 

overshoot is reduced and higher  input  acce le ra t ion  can be appl ied 

before the l e v e l  becomes i n t o l e r a b l e .  Rise time should not be 

confused with durat ion time. Both parameters inf luence the peak 

mas acce le ra t ion  a t t a i n e d ,  but i n  the  present s tudy t h e  inf luence 

of durat ion time has been el iminated by assuming a continuous ( long 

durat ion)  input.  
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APPENDIX J 

m 

P 

t 

4 t  

V 

THE, TWO _Dew FREEDOM SYSTEM - _ _  

SYMBOLS 

constants used in solving the problem, 
see Equations J.31 and 5.32 

= the damping coefficient m 
force 

damping constant 

spring constant 

denotes "the Laplace transform of" 

mass 

Laplace variable corresponding to time (t) 

time 

duration of input acceleration 

velocity arising from an impulsive 
input acceleration 

displacement, velocity and acceleration 
of some point of the model 

deflection, velocity (rate of change of 
deflection), acceleration (rate of chringe 
of velocity) of spring 

resonant frequency of the coupled syr;tem 

frequency of an uncoupled spring-mass 
system 

J.l 



SUFFICES 

C 

P 

9 

T 

m a x  

1, 2 

r e l a t e s  variable or  parameter t o  the 
point C i n  Figure J . l  ( c )  

relates variable or parameter t o  the 
upper mass-spring damper system 

relates variable or parameter to the 
lower mass-spring damper system 

denotes sum of components of quantity 

denotes maximum value of variable 

used t u  d is t inguish  between the resonant 
frequencies of the coupled system 

J.2 



The next step towards a better mathematical representation of 
the human body subjected to acceleration stress is to extend the 
spring-mass concept to include two spring-mass systems in series, with 
associated damping elements. 

and represents a two degree of freedom model. The mathematics involved 

in the investigation of this model is much more complex than that 
associated with the single degree of freedom system, but the basic 

principles are similar. 

Such a system is shown in Figure J.l 

(b) 

Figure J. 1 

The forces acting on each mass are evaluated and the equations of 

motion determined in terms of spring deflection, spring acceleration and 

the particular input acceleration. The equations of motion are then 

solved to yield the spring deflection which is used to determine the 

resultant mass acceleration. The peak mass acceleration is then. 
investigated by maximizing the relevant equations. 

involves complex algebraic terms and a digital computor has been used 

to facilitate the analysis. 

This latter process 

Derivation ~ .. of the Equations of Motion 

The forces developed in the springs (assumed linear) can be 

represented as follows: 

Spring 

Spring P 

J.3 



where kp and k, are the spring stiffness values associated with 

the springs. 
and 2 k$ are 

"he forces developed in the dampers (of constants 2 k p  

.- 
Damper p F p =  2 K 1 ( p s p  

Damper '1 F$ = X K % S ,  

The Equation of Motion of the Mass m 
---I? 

Only the spring and damper of constants k, and 2 k p  are 
attached directly to the mass so that any force transmitted to the 
mass m 
the spring kp and damper 2Kk . Hence, for some given deflection 
and rate of change of deflection 8, , the force on is given by 

P 
due to an acceleration applied at C must be transmitted through 

P 

P 

- 
on using the values for Fp 
respectively. 
FbT , is equal to the product of the mass 

So, in symbols this statement is written 

and Fp given i n  Equations J.l and 5.2 

Newton's secondJaw _ _ -  of motL0-n states that this force, 

p and its acceleration 

which is the equation of motion for the mass m . P 

The Equation of Motion forthe" Mass m 
'-7 -."-.- 

It will be demonstrated now that the equation of motion for 

the mass m is 
9 

h75 i% = 2 k g 4  + k+S$ - ( Z K p i p +  kksp) 
The R . H . S .  of this equation states that the force F%=PT 
mass 
respectively, less the fo rce  Fp7 

acting on the 

ie the force produced in the spring and damper, kC and 2 K s  
q 

Po 
transmitted to the mas8 m 

J.4 



Consider the spring kp and damper 2Kp These are attached 

directly to the mass fn+ so that any force generated in them is 
transferred directly to the mass m(t. 
spring kp and damper 2Kp is given by Equation J.3 

The force generated in the 

This force F'T is trying, for positive 5~ (compression), to push 
the masses further apart so that the force on M+ is equal and opposite to 

that On 'Y)b 

The forces in the spring k, and damper 2kq. are given in 

Equations J.l and 5.2. 

system is 

The total force due to this spring-damper 

F = Zk*k$ + k,S+ 

and its direction, for positive s s ,  is such that it tries to force 
WIB closer ton71 , that is, in the opposite direction to the force 
on mp due to the spring k b  and damper 2kp. 

on the mass M e  is then 
"he total force acting 

and applying Newton's second law to mass my gives 

5.5 

5.6 

after substituting f o r  Fps and F from J.3 and 5.5 respectively. 

In order to introduce the given input acceleration into the equation 
of motion it is necessary now to express Hp and Yq. in terms of 

.. .. 
.. 

g p ,  6% and 5~ the input acceleration. 
The original (uncompressed) length of the spring k+ is 
and from Fig. J.l(b) its length at some time during the motion is 

(Fig. J.l(a>) 

5.7 
- 

is the compression 0" -8% The difference in these two lengths 2 
in the spring s, so 

J. 5 



but 

SO 

2, = Y,o-lae-+ %e 

9% = $e- 5% + 890 
or 

Equation 5.8 is now differentiated with respect to time to yield the 
velocities 

5.8 

J.9 

because 
change with time, i.e. ' ~ ~ ~ / d k  = 0. 
with respect to time gives the acceleration of MS in terms of the 
input acceleration and spring acceleration (rate of change of rate 
of change of deflection) 

is a constant for a given spring so that it does not 
$0 

Differentiating J.9 

~~ 

.. .. ., a 

= %.- % 
4f-y .. .. .. 

An expression relating 8 ~ )  9~ and vc is obtained similarly. The 

unextended length of spring kb is seen to be from Fig. J.l(a> 
- 

J.il gc. = %I..- 2 v o  
From inspection of Fig. J.l(b) it is seen that the compressed 
length of the spring kk is 

t i p  = Y P ' t f ' t  5.12 

Again, the difference between undeflected length and the deflected 
length is, by definition, S F  hence, 

- sp = Ypo- 5 p  
= g p e -  9 p -  %+&. 

or yp = $ e - & +  Y P " - - % O  
J.13 

Now both gp0 
respect to time, both quantities yield zero. Differentiating 5.13 
twice with respect to time gives 

and 9%. are constants, so that on differentiation with 

5.14 

J.6 



But, from Equation 5.10 

Substituting this value in J;14 gives an axpression for the 
ac-celeration of W F  

5.15 

Now, using the results of J.10 and J.15 by substituting for 

the equations of motion of the mass m 
as follows 

and yq, P 
and can be rewritten 

P 9 

5.16 

For the mass 
9 ,. .. 
,.,,%( gL- ss.) = 2 k y & +  k9St-(2KesPfkbSt’) 5.17 

Dividing 5.16 and 5.17 throughout by m and m respectively gives 
P q 

and 

Adopting the definitions uked in previous appendices some of the 
above quantities can be written in tRrms of frequency ( W ) ,  which each 
spring-mass system would have if vibrating alone, viz. 

and associated damping coefficient (c) 

so that 5.18 and 5.19 become 

5.18 

5.19 

J. 7 



The terms a r e  now rearranged t o  give the equations of motion i n  the 

des i red  form .. ..* .. = s p s S . + w ; s p  + z c p s ) .  (a' 
and 

Analyt ical  Solut ion of Equations _of Motion f o r  the Spec ia l  Case 

of Zero Damping 

Analytical  s o l u t i o n s  of the  equations of motion, including the 

damping terms are poesible ,  but  i t  is considered, a t  t h i s  s tage,  

t h a t  i t  is acceptable t o  avoid too much mathematical complexity i n  an 

attempt t o  preserve physical  s ignif icance.  Also, the e r r o r s  

introduced by ignoring damping e f f e c t s  i n  the human body are not 

excessive., 

When the zero damping case is considered the equations of motion 

become 

and 

If 3Cp and Y 9. are the Laplace Transforme of Sp and 6 % 

respec t ive ly  and yc has  some constant value from t = 0 t o  t = A t ,  
Equations 5.22 and 5.23 transf'orm i n t o  

and 

5.20 

5.21 

5-22 

J.23 

5.24 

J. 25 
* 0 

for the  condition6 sar6p.,sq and 6,  = 0 a t  t = 0 

J. 8 



Equations 5.24 and 5.25 are simultaneous equations in S ,  and(; 
and can be solved by use of a standard technique. (Crout's Method 

e I 

These expressions may be simplified by evaluating the terms inside 

- .. %.(!:.?--.- - PAt: )(+"+w;+) xf. CI 
p Q  4. b'(wp' +,;+(.a&) + w;Lpw; 

The denominator of Equa-tion J.26 and 5.27 can be factored and  written 

as 

5.26 

J.27 

fi, , a n d n l  are, in fact, the resonant frequencies of the system and 

are termed coupled frequencies. 

of two equivalent Rpring-mass syktems that may be combined to describe 

the motion of the two degree of freedom model. 

Now since k ) p  W %  and are always positive quamtitlea 

They may be regarded 813 the frequencies 

2 2  2 

5.9 



can be expanded to give 

i 
3 

4 ,,,,, -, + u ; + w ; w ~ + ~ w ; ~ ~  - 2 + - & + 4 ~ p l r ~ ~ {  

z 
which is a posi t ive,  r e a l  quantity since u p 2 ,  

and positiire. 

must a l so  be real. Now u; + + m:$ is r e a l  since each 

term is real and has been shown to  be greater  than u:-+a;4 u'p' 
Therefore, the difference U;+U;-rup; -  UP^^^;+^&)^- 4 ( J p % 3 9  

of the two quant i t ies  and the i r  sum, which appear i n  Equations 5-29 

up+ are  real 
It follows tha t  the or ig ina l  expression &$+~>4$$- *N%':]" 

a 23" 

I , P'Jf  

and J.30 respectively,  a r e  r e a l  and posi t ive,  hence 

+.ties. 

and n a  ~- 

Reverting now t o  Equations 5.26 
and 5.27, these may be expresssed i n  p a r t i a l  f rac t ion  form by l e t t i n g  

J.31 

Now, the expression TorXp a n d + .  i n  Equation J .3l(a)  and J.32(a) 
must be ident ica l  t o  Equations 5.26 and 5.27 so tha t  the coeff ic ients  

of powers of p may be equated. From Equations J.3l(a) and 5.26, the 

following s e t  of equations for A,B,C,  and D are obtained. 

A + C  = o  

Hence 

A = C = O  

J. 10 



and 

D - --._ we” 
R,‘.- 11; 

B x  - w$ 
-.____ 

-n:-n: 
Similarly, the following equation8 are obtained for I ,  B, e, 3, by 
equating the coefficiente of powers of p in J.32(a) and 5.27. 

Hence 

since from Equations J.29 and 5.30 

Now these quantities “e substituted in to  Equations J.31 and 5.32 to 

yield 

n’t +a= =. “p” cw;  + UP; 

and 

These equations arcs now in a fccm..for y$ich direct Laplace transforms 

- exist and using No. 40, and ap$iylng Theorem V I 1  of Reference J.l, 

the inverse Laplace transforms obtained are for k > A k 

J-33 

J. 11 



. . . -- . . . .. .. 

1 

and for t A t .. 

5.35 

Equations 5.35 and 5.36 also represent solutions of the equations of 
motion for a continuous step function input acceleration, since this 
is the limiting case when A t  approaches infinity. 

Thus by solving the equations of motion describing the two degree 
of freedom model, expressions for the deflection of each spring has 
been obtained in terms of the coupled and uncoupled frequencies, 

input acceleration and time. 

Impulsive Acceleration Input 

As in Appendix E, use is made of the Dirac Impulse Function in 
solving the equations of motion when an impulsive input is applied to 
the system. Equations 5.22 and 5.23 are then transformed into 

and 

where v is the velocity achieved by the system. 

Equating 
of y’t so 

the right hand sides of these equations givesxb in terms 
that the equations can be solved t o  give 
sck = V b U t  

( p + k ) p z ) l P + W $ )  + klk)P; 5-37 

5-39 

It can be seen that these equations are similar to 5.26 and 5.27, except 

that VI> replaces ic ( I - in the numerator. Remembering this 

. ._ 

J. 12 

..... . .. _._. 
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fact, equations similar to 5.26 through J.32(b) can be used, and 

J.3l(b) take the form 

5.39 

The inverse Laplace transforms of these equations can be written down 
(Transform No. 11, Ref'. J.l) , allowing s p  and 6% to be expressed 
as follows 

Application of the Two Degree of Freedom Model 

There are two possible criteria for determining the permissable .. 
input acceleration. 

previously, the other, based on the strain developed in the 

spring puitsa limit on Sp(mu)and S#n(u) . 
without damping is being used, it is permissable to use the results 
of Ruff's work, Ref. 5.2 to determine $&!wu) ands%Ch\"O if applicable, 
since, in both cases, all the forces within the system are generated 

by the deflection of springs. Instead of maximizing sp and 6% as 
has been done in previous appendices for y p  , a digital computer 
program has been written to evaluate and plot 6~ and s, against ti". 
If a sufficiently small interval of time is used the maximum values 

of 6 p  and 6% may be obtained from inspection of the plots of these 
deflections. The results obtained from application of this model 

is discussed in the main text. 

One, a limit on $jp (and 2% ) has been used 
Since a linear system 

.. 

5.40 
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THE THREE DEO-REE OF FREEDOM SYSTEM 

constant introduced to assist in obtaining 
the steady state solution of Equation K.43 

constant, see Equation K.27 

damping coefficient in uncoupled mode 

damping coefficient in coupled mode 

force 

defined by i' = -1 

damping constant of damper 

denotes "Laplace transform of" 

deno tes "Inverse Laplace transform of 'I 

length of the spring 

mass 

independent Laplace variable 

amplification factor 

time 

duration of a rectangular input 

velocity due to an impulsive input acceleration 

dependent Laplace variable 

displacement coordinate, velocity, acceleration 
relative to a fixed datum 

constants used in Equation ~ . 2 8  

deflection, velocity (rate of change of 
deflection), acceleration (rate of change of 
velocity) of spring 

constants defined by ,u+ i V  = A 

K. 1 



pr 

-6. 
LA) 

C 

- I  4 phase angle = t an  E 

phase angle = tan-' ILc V 

coupled frequency of undamped system 

coupled frequency of damped system 

uncoupled frequency 

Dirac impulse funct ion 

r e l a t e s  symbol t o  condi t ions a t  t i m e  t = 0 
o r  independent of time 

r e l a t e s  symbol t o  appropriate  sub-system 
of Figure K.l(a) 

r e l a t e s  symbol t o  po in t  C of Figure K.l(a) 
and ('0) 

K.2 



As expla ined  i n  t h e  main text ,  t he  t h r e e  degree of freedom model 

was in t roduced  i n  an  a t t empt  t o  e s t a b l i s h  a model t h a t  would inc lude  

t h e  main s t r u c t u r a l  ( a s  opposed t o  hydrau l i c )  e f f e c t s  of a c c e l e r a t i o n s  

on t h e  human body. The t h r e e  degree of freedom model a l lows  t h e  

dynamic response  of a t  l e a s t  t h r e e  p a r t s  of t he  body t o  be determined 

s imul taneous ly ,  and modes of widely d i f f e r e n t  fre.quency responses  may 

be s t u d i e s ,  e.g. low f requency  body e f f e c t s  t oge the r  with t h e  h igh  

frequency s p i n a l  mode. 

mass systems wi th  damping, as i l l u s t r a t e d  i n  F igure  K. l (a )  and (b). 

The model c o n s i s t s  of three s e t s  of spr ing-  

C 
~ 

Figure  K . l  

Eva lua t ion  of t h e  Forces  Acting on Each Mass 

The a n a l y s i s  of t he  f o r c e s  a c t i n g  on t h e  t h r e e  masses of t h e  

system is similar t o  t h a t  desc r ibed  i n  Appendix J f o r  t he  two degree 

of freedom model, and w i l l  no t  be d i scussed  i n  d e t a i l  here .  

The f o r c e s  Fz and 3 , due t o  t h e  a s s o c i a t e d  s p r i n g s  and dampers, 

a c t i n g  on t h e  masses mi2 and h73 are 

F, = k,& + z k k ,  i, 
and 

K . l  

K.2 

K . 3  



for given spring deflections sa and 8, . Forces Fz and F3 act on 

mass mt in addition to the force developed in its own spring-damper 

combination, but in the opposite direction. So 

F, = k ,S ,+2# , l i l -~=~+-2~~ i j l . -  k368-2kaka 

Newton's second law of motion is used to give the equations of motion 

for the three maesee M, %, m3 These are 

mlL& = k , ~ , + 2 k , I ; , -  kxSz-2&-  k3S3-2k363 

-9, = k, sa + 2 kk 
t'?,%, = h ~ S 3  + 2k363 

The output accelerations _____  ~- GI , $3 must be expressed in terms of 

equations of motion. Now, from Figure K.l(a), the undeflected 

length A,, of the spring k, is 

g, , 6, , g3 and gc the input acceleration in order to solve the 

A0 = 80%- 80, 
and the deflected length 1% is 

4 2  = %$jl 

sz = A L O ' A &  

The deflection, 8,. in the spring k, is, by definition 

= L.- 901- 82 + % I  

Equation K.6 is differentiated twice with respect to time to give 

since voz and %,,, are constants and hence 

$#*L = $0, = O 

Similarly, (since the masses Mz and -3 and their spring-damper 

systems may be interchanged without loss of generality) .. 
83 = $,- g 3  

The undeflected length of spring k ,  
and the deflected length ~ , - L J ~  

is (see Fig. K.l(a)) yol 

K-3 

K . 4  
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So, by definition 

SI = g i -  31 + Yc 

which, after differentiating twice with respect to time, yields 

K.9 

K.10 

since go, is a constant and so = 0. 

The three equations K.7, K.8 and K.10 may now be solved to give .. .. S I  , and $3 in terms of S, g l  , i3 and vc 
Equation K.10 is rearranged and so giving 

$, = ijc-& K.ll 

Equations K.7 and K.ll are now used to give an expression for Sz 
.. 
yz = 9 ,  - 2a (from Equation K.7) 

.. 
But, 3l 
required form for 9, 

= 3c - SI so that on substituting for 9, above, the 
is obtained. 

Similarly, the expression for 93 is obtained by using Equations K.8 
and K.ll to give 

.. .. 
The expressions for % I  , % 2  and 5.3 are now used in the set of 
Equations K . 3  to give the equations of motion in a form consistent 
with that used throughout the appendices. The equations of motion 

become 

m, I i,jc-Sl) = k,S, + ~ k , k ,  - I?,&,- 2 ~ ~ 2 ~ -  k3S3 - 2 ~ 3 S 3  

hl(ijc&-~2) = hl& + 2 ~ ~ k ,  

~ 3 ~ ~ c - ~ , - j j 3 )  = k3& +xk3s3 

These equations are now rearranged and divided through by the 

appropriate mass to give .. 
g1 f 225 i;, + 5, S I  - 251 p;, - k,. - G3 i3 - !?. = 3c  

= 8 c  

)?I l-v I MI “ 7 1  
I .  .. 

6, + gz  c 2  5 m .h 5;,+ k,S l  Mi 

.. .. 
“3 

K.12 

~.13 

K. 14 

K.15 
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Certain parameters of the system can now be defined as follows 

where W ;  is the uncoupled frequency of the appropriate spring-mass 
system and C is the damping coefficient. 

Note that 

and 

so that using these parameters (K.16) in the equations of motion 

These are the equations of motion of the system for which a solution 
is required using the Laplace transform method. 

Solution of the Equations of Motion 

There are two distinct input accelerations of interest and for 
which experimental results exist. These are: 

(a) short duration input with duration times, less than 
one second (Ref. K.2) 

(b) long (seconds o r  minutes) duration sinusoidal inputs as 
reported in Ref. K.l 

K. 16 

K.17 

The solution f o r  case (a) will be obtained by the use of the Laplace 
transformation, as in previous appendices. The method used f o r  

case (b) will be explained during the solution. 

K.6 



(a) The General Case of the Rectangular Input 

In this case the solution follows along lines similar to that of 
previous appendices. 
for a rectangular input acceleration, of the form 9 
from t = 0 to t = A  t is (see Appendix J or Transform 78, page 136, 
Ref. K.3). 

It will be remembered that the hplace transform .. 
= constant 

ijc [,-LAtP) 

Then, for 6~ = 6; = 0 at t = 0, Equations K.17 transform readily 

into 

.. 
( l - h b a t )  = blY, -t l p2+2c+ +w:>x2 

';3c 

$ p & C * t )  p l y I  + L p - c Z c , b + 4 ) X 3  

The second and third Equations K.18 may be rewritten to give 

Y1 and X 3  in terms of X I  and p as follows 

1 - C - W )  - p x ,  

/5= + 2c,p *. a," 

~.18(b) 

K. 18 (C 1 

K. l9(a) 

K. 19( b) 
p' 3 2c3 p + CI); 

"he expressions for 

in Equation ~.18(a) to give the following equation for X I  

and Y j  from Equation K.19 are now substituted 

( p=t 2 c , p + 4 )  c b ' + 2 C +  +u$) 

to clear the denominators, and the terms inside the brackets are 
expanded and regrouped. 

In the first instance, only the terms independent of X I  will be 

collected and transferred to the right side of K.20, so 

K. 7 
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i t  can v i b r a t e  when considered as a combined system. 

undamped frequency and E the  associated damping of each mode. 

damped frequency of v i b r a t i o n  is therefore  given by 

L e t a L  be the 

The 

fit = &?i 2 - E ;  2 

which r ep resen t s  the s u b - c r i t i c a l l y  damped case of E; < ni 

Appendix E) .  K.23 may now be expressed as 

Y, c p a +  2 E ,  p +n: 1 c p'" ' X E ,  + -4 < ~~4 2 ~3 P ) K.24 

which follows from similar reasoning t o  t h a t  used i n  Appendix J i n  

obtaining Equation J.31(b) from 5.26. 

expanded and wr i t t en  i n  descending powers of p as follows 

(compare 

This expression may be 

x,  [ p ~ + 2 ~ ~ ~ + t ~ t ~ ~ ) b 5  + c ~ ~ * n ; + f i ~ 4 ~ ~ , ~ ~ 4  ~ E , G  + 4 ~ 3 ~ l ) b "  

~ . 2 5  

and ci may be obtained from t e s t  da t a  e.g. from Ref. 1 and 

Ref. 2 ,  and an i t e r a t i v e  s o l u t i o n  of Equations ~ . 2 6  can be obtained. 

To avoid t e d i o m c a l c u l a t i o n s ,  an IBM 1620 d i g i t a l  computer has been 

programed t o  ob ta in  a s o l u t i o n  t o  Equation ~ . 2 6  f o r  assumed mass 

r a t i o s .  The s o l u t i o n  g ives  values of W ;  and C ;  which r e f e r  t o  

the ind iv idua l  c h a r a c t e r i s t i c s  of the component mass-spring systems. 

K.9  



XI 

Expression K.21 and K.2k as follows, since the right and 
left hand sides of Equation K.20 regrouped 

may now be expressed 3 ,  terms of known quantities and p from 

= ( I + P ? I ? ’ . + . r V l 3  L d 4  
Bo t?l r n l  

from K.21 and the Ci and are known from K.26. In order to 
proceed with the solution, the right side of Equation K.27 must be 
expressed in the form of partial fractions, so let 

K.28 

gives the following equations 

K. 10 



These equations can also be solved with the aid of a digital computer 

to yield values for the u I s  and p ’ s .  

Returning to Equation ~ . 2 8  and applying transforms 50 and 51, 

pages 133 and 134 of Ref. 3 ,  the solution of the problem may be 
written in terms of d; , f3 1 , 
transforms are written here and combined, the case of Q’> 

is considered. 

- 
L and C L . For convenience, the 

- 
c t  . 

L-l-___ P - - s- pmdi t: 
p 2 . + 2 ~ p + n . ~  Ai 

where 25 fiz = f l 1 3 = ,  = 

Combining this result with Theorem VI1 gives for t ? A t 

and for t < A t 

K.ll 



The n o t a t i o n  is now in t roduced  i n  o rde r  t o  a b r e v i a t e  t he  equat ions.  

On inspec t ion  of Equation ~ . 2 8  i t  is seen  t h a t  the  r i g h t  s i d e  of the  

equat ion  c o n s i s t s  of t h r e e  terms of the  form 

f o r  which the  i n v e r s e  Laplace t ransform h a s  been obta ined  above. 

The s o l u t i o n  now fo l lows  

and f o r  t 4 t 

Since the  terms invo lv ing  damping have been r e t a i n e d ,  t he  s p r i n g  

is no longer  the  s o l e  means of t r a n s m i t t i n g  f o r c e  and the  l i m i t a t i o n  

on &‘ cannot n e c e s s a r i l y  be used t o  determine l i m i t i n g  g’s .  

To ta l  fo rce  exe r t ed  on the  mass by its a s s o c i a t e d  spring-damper 

system, w i l l  be used as a to l e rance  c r i e r i o n  i n  t h e  s p i n a l  mode, 

considered here .  Th i s  f o r c e  is given  by 

F = ~ Y I , ( L ~ ? & , + % C , ~ ~ )  

o r  w r i t t e n  as an  a c c e l e r a t i o n  

the a c c e l e r a t i o n  t h a t  the  mass lml would experience i f  massestv., and 

mnj were detached. 

Equation K.32 i n  o rde r  t h a t  5, 
An express ion  f o r  s, must be obtained from - 

may be eva lua ted .  

D i f f e r e n t i a t i n g  Equation K.32 involves  d i f f e r e n t i a t i n g  express ions  

K. 12 



such as 

K . 3 4  

where E, fi , A t and t$ are independent of time. 

"he well known formula 

6 (LlU) = u&. + fl-d! 
dt dt CCk 

- 5 L t -&> 
is used to differentiate Expression K.34. 
and Lr by sin [fi (t - A t) + $3 

Replacing u by e 
in K . 3 5  yields 

K . 3 5  

- I  fi 
But @ = tan , therefore 

theref ore 

on application of the identity 

6 (A+ a) ~ A c r \ A C a 9 R - l 2 3 9 a c h B  

~ . 1 3  



and for t 4 t 

K. 47 

A program for the IBM 1620 digital computer has been written for the 
evaluation of the quantity gF so that its maximum value may be 
obtained by inspection of a plot of gk 

.. 
.- 

against time. 

Since the step input- acceleration (continuous) case is the 
nput case as A t - ~ a  the above solution 

of 8 ,  for t < A t is also the solution for the step input. 

Impuslive Input Acceleration 

The Dirac impulse function (see Appendix E) is used again to 
obtain a solution for the impulsive input case. 

velocity change. within the system due t o  the applied acceleration, 
then the Laplace transform of the input acceleration is 

If V is the 

“ P  .. 
The transformed equations of motion (Equation K.17) for gC = V A  (t) 

(4 (t) is the Dirac impulse function) is then 

= ( p + x c , p t W : ) r ,  + ? p + + G p L -  M3(2C3 &, -+ ?;> x3 K.38(a) 
VlJ 

vp = p-I 4- L p 2 c 3  P t  l+?3 3t3 (C 1 

The set of Equations K.38 is the same as the set ~.18 with v p  
replacing g c  (1 - e - p A k )  and the solution of XI from the 
set of Equations K.38 may be obtained from =’by replacing 

.. 

.. 
idsc (1 - tZ-pAk ) byVP . Hence 
Y 

I 9 - c  b P  4, B$+ F5. p+ e,p 
x, = v  c p=+=I -en: ) c p”4-2G;P +~2:) ( j2 -k 2c3 p’ r n ;  > 

K.39 is expressed in partial fractions (c.f. Equation ~.28l 

K.39 

K.40 

K. 14 



iih.ere Bo t.hrough El-$ are obta ined  from Equat ion K.27. 

The i n v e r s e  Laplace t ransforms used f o r  t he  p rev ious  case  a r e  a p p l i c a b l e ,  

so  t h e  s o l u t i o n  may be obta ined  from K.32(b) by r e p l a c i n g  gc 
Thence i z 3  

.. 
by V 

where 

and 

D i f f e r e n t i a t i n g  K.42 once wi th  r e s p e c t  t o  time g i v e s  
i =3 

The technique and computer programs developed f o r  t h e  g e n e r a l  

r e c t a n g u l a r  i n p u t  a r e  used t o  maximize 3 ,  , t h e  a c c e l e r a t i o n  t h a t  t h e  

mass M, would exper ience  i f  uncoupled from t h e  system. 

.. - 

~.15 



The equa t ions  of motion f o r  t h i s  ca se  are obtai-ned from 

Equation K . 1 7  on p u t t i n g  
.. 2'= yco.f& wt: 

.. 
where $,.-, is t h e  ampli tude and LS t h e  f requency of t he  i n p u t  

a c c e l e r a t i o n .  "he fo l lowing  equa t ions  are then  ob ta ined  
.. .. 

+?c,  i,.+L.);Ls - 2%L&.- 21 w: S I  - 2 r 3  e ,  a,3 - 23(..$Lq3 1= Ldcc c u i \  Lc.i:: 

m1 MI ml h l  
8 ,  
I .  .. .. 
S I  .f s, -t Z& +..:s, = $ J c c : ~ ~ ~  ai= K. 43 

The i n p u t  a c c e l e r a t i o n  is now w r i t t e n  as t h e  "Imaginary P a r t  of"  
' 2  e iat. , where L = -1, s i n c e  = cos  i d t  + i s i n h i '  . ' -  ;ut 

3c c e  
The damping i n  t h e  system w i l l ,  a f t e r  a s u f f i c i e n t l y  long t ime, 

a t t e n u a t e  a l l  motion except  t h a t  with a frequency e3 (see Appendix E ) .  

Th i s  p a r t  of t he  s o l u t i o n  i s  known a s  t h e  "s teady s t a t e f t s o l u t i o n .  

If the  s o l u t i o n  r e p r e s e n t s  an  o s c i l l a t i o n  of f r equencyW then 
~~ 

i t  can be r ep resen ted  by where i s  some complex cons t an t  

t o  be determined and J. = 1, 2 ,  3. 

;wL' '. i -ak .. 
a r e  s u b s t i t u t e d  f o r  6 )  and ($cc s i n d k  

and k2- .. A i  e 
0- 

r e s p e c t i v e l y .  gj and can be obta ined  by d i f f e r e n t i a t i o n  and 

s i n c e  dlLkeiwL- = i 
of each equat ion .  

iwir  throughout by e g i v e s  

id, 
w i l l  be a f a c t o r  of each term 

Making these  s u b s t i t u t i o n s  i n  K.43 and d i v i d i n g  

.. 
I- ~ 4 .  i. 2 C ,  ~3 + ~3,' ) A I - ',? (i2 Cz Lc).+ ut) A L'- !? 3 [i- 2 C j  w c W $  ) A, 2 YeC 

t V 1  I WI 

.. - Lc;L A ,  .+ (4' f L%CL'd e I&) A, 5 %cb K. 44 

Since  complex numbers h a v e  been in t roduced ,  t h e  c o n s t a n t  A 2  is 

complex and,  i n  o rde r  t.o cont inue  with the  s o l u t i o n ,  t he  r e a l  

K. 16 



c o n s t a n t a p  and v are defined as follows 
/yj +‘yi = 

The so lu t ion  of these equations can be obtained numerically 

using a d i g i t a l  computer t o  g i v e r l  and VJ s ince  W i , C J  

are known from K.26. 

The r a t i o  R of the output o r  response amplitude t o  the 

input  amplitude is now obtained 

K. 45 

~ . 4 6  

and the phase angle 

K. 17 
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APPENDIX L 

SUMMARY OF RELEVANT HOLLOMAN A.F.B. AND 
STANLEY A V I A T I O N  TEST RESULTS 

This appendix summarizes t h e  experimental  d a t a ,  used i n  

connect ion with t h e  dynamic model a n a l y s i s ,  t h a t  have no t  p rev ious ly  

r ece ived  wide pub l i ca t ion .  Most of t h i s  d a t a  concerns experiments 

performed on t h e  Daisy Track s l e d  a t  Holloman A.F.B. dur ing  a program 

t o  i n v e s t i g a t e  t h e  e f f e c t  of s h o r t  du ra t ion  a c c e l e r a t i o n s  of up t o  

80 G on human and animal s u b j e c t s  (Task 78503). 
still being c a r r i e d  on. Four experiments a r e  a l s o  r epor t ed  t h a t  

were c a r r i e d  ou t  a t  S tan ley  Aviat ion us ing  a monorail  f a c i l i t y ,  as  p a r t  

o f  a comprehensive s e r i e s  of t e s t s  t o  eva lua te  t h e  landing  c h a r a c t e r i s t i c s  

of t he  S t a n l e y  B-58 escape capsule .  

This  t es t  program is 

The Holloman d a t a  a r e  given i n  t he  fol lowing t a b l e  (see a l s o  

R e f s .  L . l ,  L.2 and L.3) .  The angle  quoted i n d i c a t e s  t h e  p o s i t i o n  of 

t h e  body r e l a t i v e  t o  t h e  d i r e c t i o n  of t he  a c c e l e r a t i n g  f o r c e ,  which i s  

assumed a c t i n g  from Oo. 

TABLE L . l  

Run 
No. 

335 

344 

389 

390 

~ 

Sub jec t  

Human 

Bear 

Bear 

Bear 

Peak 
G 

41.8 

43.2 

55 

55-3 

Rate 
of 

Onset 
G/sec 

214c 

1660 

3980 

4200 

T o t a l  
Dura- 
t i o n  
( sec  1 

.05 

09 

03 

05 

I 
~ 

Veloc i ty  
Change 

( f t / s e c )  

48.1 

47.3 

47.2 

46.1 

I 
~ 

Dim. 
of 

Accel 

80 
fwd. 

100 
back- 
ward 

0 
head- 
ward 

0 
head- 
ward 

Medical Report 

Shock, l o s t  conscious- 
ness .  Severe pa id  
L.2 t o  coccyx. 

Check o u t ,  no autopsy.  
No i n  j u r i e s (  '?) 

Compression f r a c t u r e s  
of t h o r a c i c  ver tebrae .  
F r a c t u r e  of r i b  and 
pe lv i s .  I n t e r n a l  and 
e x t e r n a l  hemorrhage. 

F r a c t u r e  of v e r t e b r a e  
~ - 5  & T.6,4th r i b  and 

Remorrhage. 
elvis .Mul t ip le  

L . l  
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Run 
No. 

661 

665 

667 

674 

675 

677 

__ 

;ub j e c  t 

Human 

Human 

Human 

Human 

Human 

Human 

Peak 
G 

I -- 

34.0 

27.0 

30.5 

33.5 

34.0 

29.0 

Rate 
of 

Onset 
G/sec 

942 

775 

942 

1036 

1080 

1100 

' o t a l  
Iura- 
; ion 
: s ec  1 
. .  

.08 

.08 

-08 

.08 

.08 

09 

l e l o c i t y  
Change 

:f t /sec ) 
. -  

46.4 

41.9 

45.9 

45.3 

46.0 

43.5 

.-i- .- 

D i m .  
of 

Accel 

100 
back- 
ward 

100 
back- 
ward 

100 
back- 
ward 

100 
back- 
ward 

100 
back- 
ward 

100 
back- 
ward 

Medical Report  

Ce rv ica l  sp ine  pain.  
P a r t i a l  l o s s  of v i s ion .  
Beginning syncope. 

No i n j u r y  

No i n j u r y  

Cerv ica l  sp ine  pa in  

S l i g h t  shock. Compression 
f r a c t u r e  T.5. F rac tu re  of 
L .5  

No i n j u r y  

I n  t h e  experiments  c a r r i e d  ou t  a t  S tan ley  Avia t ion ,  the  s u b j e c t s  

were s e a t e d  i n  an escape copsu1.e with f u l l  r e s t r a i n t ,  and dropped 

from a monorai l  wi th  forward and v c r t i c a l  v e l o c i t y .  Impact f o r c e s  

were a l l e v i a t e d  by a y i e l d i n g  metal a t t e n u a t o r  and a c c e l e r a t i o n s  i n  

the  t h r e e  major d i r e c t i o n s  were measured by acce lerometers  mounted on 

t h e  r i g i d  seat  hack. 

polyurethane w a s  about  9(3% bottomed by t h e  occupant ' s  normal weight.  

I n  a l l ,  34 tes t s  with bears  a n d  humans were performed and the  r e s u l t s  

r epor t ed  i n  Table L.2 a re  of pa r t . i cu l a r  i n t e r e s t  i n  t h a t  some form of 

i n j u r y  occurred.  

The s e a t  cushion of General  T i r e  1205 
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TABLE L.2 

-. - 

Run 
No.  

49 

50 

51 

58 

. .  

Sub 3 ec  t 

Human 

Human 

Human 

Human 

- .. . .- 

. -  -- 
Spina l  

19.5 
foo t -  
ward 

37.4 
head- 
ward 

28.8 
foot -  
ward 

20 
head- 
ward 

.- 

Peak c) 

Forward 
'ransversc 

.~ 

45.3 

37.4 

86.6 

6 3 - 3  

- 

-~ 

Lateral 

- 

7.8 

11.7 

17.7 

27.5 

. 

Transverse 
Veloc i ty  

Change 

35 f t / s ec .  

36 ft/sec. 

i3.5 f t / s e c  

i7.6 f t / s ec  

~ . .- -~ ~ 

Medical Report 

S l i g h t  discomfort ,  
T.3 and T.4, gone 
i n  24 hours.  

Compression f r a c t u r e  
T.3 

Severe shock ( p a l l o r  
and t rembling) .  

O c c i p i t a l  headache, 
pa in  i n  T.4. 

Other drop t e s t s  c a r r i e d  o u t  a t  S tan ley  Aviat ion have included 

62 s t a t i c  t e s t s  ( i . e .  no forward v e l o c i t y )  and 49 drops from a 

moving t ruck .  These experiments  covered a range of he igh t s  up t o  

12 f t .  ( t r a n s v e r s e  p o s i t i o n )  and no i n j u r i e s  were repor ted .  

L.3 



No. - "e 

L. 1 Beeding E. L.. "Human Decelera t ion  T e s t s  , '' 
and Mosely J. D. Hol1.oinan A .  E' a B . AFMDC-TN-60-2, 

Jan. 1960. 

L. 2 Beeding E.  L. D a i s y  T r a c k  T e s t  Report  (Nos. 338-5191, 
Holloman A . F . H . ,  Dec. 1959. 

L.3 Beeding E. L. Daisy Decelera tor  Tests (Nos.  520-707), 
Holloman A . F . R .  J u l y  1960, 

L.4 NASA-Langley, 1965 D-2645 



“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate diJsemination 
of information concerning its activities and the results thereof.” 

-NATIONAL AERONAUTICS AND SPACE h“ OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications indude conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publication> may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 5 

N AT I 0 N A L A E RO N A UTI CS A N D S PAC E A DM I N I ST RAT I 0 N 

Washington, D.C. PO546 


